Document Type : CASE STUDY


1 Department of Information Management, College of Informatics, Chaoyang University of Technology, Taichung City, Taiwan

2 Department of Statistics, College of Natural Science, Seoul National University 56-1 Mountain, Sillim-dong, Gwanak-gu, Seoul metrópolis, Korea

3 Bioinformatics and Data Science Research Center, Bina Nusantara University, DKI Jakarta, Indonesia

4 Polytechnic Statistics, DKI Jakarta, Indonesia

5 Department of Mathematics, Kalimantan Institute of Technology, Kalimantan Timur, Indonesia

6 Department of Mathematics, Universitas Sumatera Utara, North Sumatera, Indonesia

7 Department of Statistics, Padjadjaran University, West Java, Indonesia.

8 Computer Science Department, BINUS Graduate Program Master of Computer Science Bina Nusantara University, DKI Jakarta, Indonesia


COVID-19 has a severe and widespread impact, especially in Indonesia. COVID-19 was first reported in Indonesia on March 03, 2020 then rapidly spread to all 34  provinces by April 09, 2020.  Since then, COVID-19 is declared a state of national disaster and health emergency. This research analyzes the difference of CO, HCHO, NO2, and SO2 density in Jakarta, West Java, Central Java, and South Sulawesi  before and during the pandemic. Also, this study assesses the effect of large scale restrictions on the economic growth during COVID-19 pandemic in Indonesia. In a nutshell, the results on Wilcoxon and Fisher test by significance level α=5% as well as odds ratio showed that there are significant differences of CO density in all regions with highest odds ratio in East Java (OR=9.07), significant differences of HCHO density in DKI Jakarta, East Java, and South Sulawesi. There are significant differences of NO2 density before and during public activities limitation in DKI Jakarta, West Java, East Java, and South Sulawesi. However, the results show that there are no significant differences of SO2 density in all regions. In addition, this research shows that there are significant differences of retail, grocery and pharmacy, and residental mobility  before and during the COVID-19 pandemic in Indonesia.  This research also shows that during the COVID-19 pandemic there are severe economic losses, industry, companies, and real disruptions are severe for all levels of life due to large scale restrictions.

Graphical Abstract

Impact of COVID-19 large scale restriction on environment and economy in Indonesia


  • Wilcoxon test, ODDS ratio, fisher test, and graph visualization provide the same conclusions related to our environment variables;
  • COVID-19 affect the environmental, especially CO in all of region, NO2 (West Java, East Java, and South Sulawesi), HCHO (DKI Jakarta, East Java, and South Sulawesi);
  • Nevertheless no significant difference regarding SO2 in all of region;
  • The higher the HCHO will increase the risk of contracting COVID-19;
  • COVID-19 also changes population mobility in each province. COVID-19 significant affect the GDP Growth, Exchange rate IDR to USD, and IHSG.


Main Subjects

Aktay, A.: Bavadekar, S.: Cossoul,G.: Davis, J.: Desfontaines, D.: Fabrikant, A.: abrilovich, E.: Gadepalli, K.: Gipson, B.: Guevara, M.: Kamatah, C.: Kansal, M.: Lange, A.: Mandayam, C.: Oplinger, A.: Plunkte, C.: Roessler, T.: Scholsberg, A.: Shekel, T.: Vispute, S.: Viu, M.: Wellenius, G.: Williams,B.: Wilson, R.J., (2020). Google COVID-19 community mobility reports: Anonymization process description (version 1.0). ArXiv, 2004.04145. (5 pages)

Baldwin, R.; Mauro, B.W., (2020). Economics in the time of COVID-19. A Book.CEPR Press (123 pages).

Barcelo, D., (2020). An environmental and health perspective for COVID-19 outbreak: Meteorology and Air Quality Influence, Sewage Epidemiology Indicator, Hospitals Disinfection, Drug Therapies and Recommendations. J. Environ. Chem. Eng., 8(4): 104006 (4 pages).

Bhowmik, D.; Bhattacharjee, C.; Sampath Kumar, K.P., (2010). Chikungunya epidemic in India- A major public-health disaste. Res. J. Pharm. Biol. Chem., Sci., 1(4): 63-73 (11 pages).

Caraka, R.E.; Chen, R.C.; Toharudin, T.; Pardamean, B.; Yasin, H.; Wu, S.H., (2019). Prediction of status particulate matter 2.5 using State Markov Chain Stochastic Process and HYBRID VAR-NN-PSO’, IEEE Access, 7: 161654–161665 (12 pages).

Caraka, R.E.; Chen, R.C.; Toharudin, T.; Tahmid, M.; Pardamean, B.; Putra, R.M., (2020). Evaluation Performance of SVR Genetic Algorithm and Hybrid PSO in Rainfall Forecasting. ICIC Express Letters Part B: Applications. 11(7): 631–639 (9 pages).

Caraka, R.E.; Bakar, S.A.; Tahmid, M., (2019). Rainfall Forecasting Multi Kernel Support Vector Regression Seasonal Autoregressive Integrated Moving Average. AIP Conference Proceedings, 020014 (7 pages).

Caraka, R.E.; Yasin, H., (2017). Geographically Weighted Regression (GWR) Sebuah Pendekatan Regresi Geografis. 1st edn. Yogyakarta: MOBIUS GRAHA ILMU (155 pages).

Djalante, R.; Lassa, J.; Setiamarga, D.; Mahfud, C.; Sudjatma, A.; Indrawan, M.; Haryanto, B.; Sinapoy, M.S.; Rafliana, I.; Djalante, S.; Gunawan, L.A.; Anindito, R.; Warsilah, H.; Surtiari, I.G.A., (2020). Review and analysis of current responses to COVID-19 in Indonesia: Period of January to March 2020., Progress Disaster Sci., 6: 100091 (9 pages).

Djalante, R.; Thomalla, F., (2012). Disaster risk reduction and climate change adaptation in Indonesia. Int. J. Disaster Resilience Built Environ., 3(2): 166–180 (15 pages).

European Space Agency, (2020). Sentinel-5P, 2020.

Gorelick, N.; Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R., (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ., 202: 18–27 (10 pages).

Guerrieri, V.; Lorenzoni, G.; Straub, L.; Werning, I., (2020.) ‘Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages? SSRN Electr. J., (37 pages).

Haagen-Smit, A.J., (1959). Urban Air Pollution. Adv. Geophysics, 6: 1–18 (18 pages).

Ismail, Z.; Ismail, Z.; Suhartono; Yahaya, A.; Efendi, R., (2009). Intervention model for analyzing the impact of terrorism to tourism industry. J. Math. Stat., 5(4): 322–329 (7 pages).

Isaifan., (2020). The dramatic impact of Coronavirus outbreak on air quality: Has it saved as much as it has killed so far? Global J. Environ. Sci. Manage., 6(3): 275-288 (14 pages).

Isaifan, R. J.; Al-Thani, H.; Ayoub, M.; Aissa, B.; Koc, M., (2018). The Economic Value of Common Urban Trees in the State of Qatar from an Air Quality Control Perspective. J. Environ. Sci. Pollut. Res., 4(3): 285–288.  (4 pages)

Isaifan, R. J.; Baldauf, R. W. (2020). Estimating Economic and Environmental Benefits of Urban Trees in Desert Regions. Front. Ecol. Evol., 8; 1–14 (14 pages).

Jahangiri, M.; Jahangiri, M.; Najafgholipour, M., (2020). The sensitivity and specificity analyses of ambient temperature and population size on the transmission rate of the novel coronavirus (COVID-19) in different provinces of Iran. Sci. Total Environ., 728: 138872 (19 pages).

Kaban, P. A.; Kurniawan, R.; Caraka, R.E.; Pardamean, B.; Yuniarto, B.; Sukim., (2019). Biclustering method to capture the spatial pattern and to identify the causes of social vulnerability in Indonesia: A new recommendation for disaster mitigation policy. Procedia Comput. Sci., 157: 31–37 (7 pages).

Kurniawan, R.; Siagian, T.H.; Yuniarto, B.; Nasution, B.I.; Caraka, R.E., (2018). Construction of social vulnerability index in Indonesia using partial least squares structural equation modeling. Int. J. Eng. Technol., 7(4): 6131–6136 (6 pages).

Kurniawan, R.; Sohibien, G.P.D.; Rahani, R., (2019). Cara Mudah Belajar Statistik Data and Eksplorasi (256 pages).

Leslie, George B.; F. W. Lunau., (1994).Indoor air pollution: problems and priorities. Cambridge University Press (130 pages).

Ma, X.; Ma, X.; Vervoort, D.; Reddy, C.; Park, K.B.; Makasa, E., (2020). Emergency and essential surgical healthcare services during COVID-19 in low- and middle-income countries: A Perspective. Int. J. Surgery. IJS Publishing Group Ltd. (14 pages).

McKibbin, W. J.; Fernando, R., (2020). The global macroeconomic Impacts of COVID-19: Seven Scenario. SSRN Electr. J., CAMA Working Paper No. 19/2020 (45 pages).

Moritz, S.; Bartz-Beielstein, T., (2017). The R Journal: 9(1): 207–218 (12 pages).

Ogen, Y., (2020). Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ., 726 (14 pages).

Orive, G.; Lertxundi, U.; Barcelo, D., (2020). Early SARS-CoV-2 outbreak detection by sewage-based epidemiology. Sci. Total Environ., 732: 139298 (8 pages).

Ouhsine; A. Ouigmane; El. Layati; B. Aba; R. Isaifan; M. Berkani Impact of COVID-19 on the qualitative and quantitative aspect of household solid waste, Global Journal of Environmental Science and Management, Volume 6, Special Issue (Covid-19). 41-52 (12 pages).

Otmani, A.; Benchrif, A.; Tahri, M.; Bounakhla, M.; Mahjoub, El.; Krombi, M.,(2020). Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentrations in Salé City (Morocco). Sci. Total Environ., 735(2): 139541 (5 pages).

Pansini, R.; Fornacca, D., (2020). Initial evidence of higher morbidity and mortality due to SARS-CoV-2 in regions with lower air quality. MedRxiv. (17 pages).

Pardamean, B.; Budiarto, A.; Caraka, R.E., (2018). Bioinformatika dengan R Tingkat Lanjut. 1st edn. Yogyakarta: Teknosains (147 pages).

Pribadi, K.S.; Pradoto, Rani G.; Hanafi, E.A.;  Rasmawan. I.M.A.B., (2020). Lombok earthquake, one year later: Housing sector recovery in E3S Web of Conferences (10 pages).

R Core Team., (2008). R software. R Foundation for Statistical Computing.

Reina Ortiz, M.; Le, N.K.; Sharma, V.; Hoare, I.; Quizhpe, E.; Teran, E.; Naik, E.; Salihu, H.M.; Izurieta, R., (2017). Post-earthquake Zika virus surge: Disaster and public health threat amid climatic conduciveness. Scientific Reports (10 pages).

Rofi, A.; Doocy, S.; Robinson, C., (2006). Tsunami mortality and displacement in Aceh province, Indonesia’, Disasters (11 pages).

Şahin, M., (2020). Impact of weather on COVID-19 pandemic in Turkey. Sci. Total Environ., 728: 138810 (11 pages).

Sharma, S.; Zhang, M.; Anshika.; Gao, J.; Zhang, H.; Kota, S.H., (2020). Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ., 728: 138878 (6 pages).

Shi, P.; Dong, Y.; Yan, H.; Zhao, C.; Li, X.; Liu, W.; He, M.; Tang, S.; Xi, S., (2020). Impact of temperature on the dynamics of the COVID-19 outbreak in China. Sci. Total Environ., 728: 138890 (28 pages).  

  Siddle, J.; Tolleson-Rinehart, S.; Brice, J., (2016). Survey of Emergency Department staff on disaster preparedness and training for Ebola virus disease. Am. J. Disaster Med., 32338640 (13 pages).

Suhartono., (2011). Time Series Forecasting by using Seasonal Autoregressive Integrated Moving Average: Subset, Multiplicative or Additive Model. J. Math. Stat., 7 (1): 20-27  (8 pages).

Toda, A.A., (2020). Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impac. 1–15 (15 pages).

Tosepu, R.; Gunawan, J.; Effendy, D.S.; Ahmad, L.A.O.I.; Lestari, H.; Bahar, H.; Asfian, P., (2020). Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Sci. Total Environ., 725: 138436 (4 pages).

Whiley, D.M.; Goire, N.; Lahra, M.M.; Donovan, B.; Limnios, A.E.; Nissen, M.D.; Sloots, T.P., (2012). The ticking time bomb: Escalating antibiotic resistance in Neisseria gonorrhoeae is a public health disaster in waiting. J. Antimicrob. Chemother., (3 pages).

Whitworth, J., (2020). COVID-19: a fast evolving pandemic. Transactions of The Royal Society of Tropical Medicine and Hygiene (2 pages).

Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F., (2020). Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. J. Chem. Info. Model., (36  pages).

Yeh, H.; Imamura, F.; Synolakis, C.; Tsuji, Y.; Liu, P.; Shi, S., (1993). The Flores Island tsunamis. Eos, Transactions American Geophysical Union (5  pages).

Zambrano-Monserrate, M. A.; Ruano, M. A.; Sanchez-Alcalde, L., (2020). Indirect effects of COVID-19 on the environment. Sci. Total Environ. 728: 138813 (4 pages).

Zhu, L.; Jacob, D.J.; Keutsch, F.N.; Mickley, L.J.; Scheffe, R.; Strum, M.; González Abad, G.; Chance, K.; Yang, K.; Rappenglück, B.; Millet, D.B.; Baasandorj, M.; Jaeglé, L.; Shah, V., (2017). Formaldehyde (HCHO) As a Hazardous Air Pollutant: Mapping Surface Air Concentrations from Satellite and Inferring Cancer Risks in the United State. Environ. Sci. Technol., 51(10): 5650–5657 (8 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.