Document Type: REVIEW PAPER


Department of Civil Engineering, School of Engineering and Technology, Sharda University, Uttar Pradesh, India


Industrial effluents are a menace to the environment and the fact that their characteristics vary from industry-to-industry only adds to the complex challenge they offer to the engineers and scientists. Resource-efficient and environment-friendly solutions to this hazard are a call of the hour. Coagulation, by synthetic chemicals, has been used as a cost-effective and efficient method for managing the effluents generated by a large number of industries. However, the synthetic chemicals themselves are a cause of concern due to their non-native nature, non-degradability, and health conditions associated with their left-over residues. Natural coagulants offer a cost-effective, environment-friendly, and sustainable alternative to the application of synthetic chemicals. Such natural coagulants, despite their demonstrated effectiveness in treating the industrial wastewaters, have their own limitations and are yet to be investigated for large-scale applications. The current work presents a state-of-the-art review of the natural coagulants' application in treating industrial wastewaters and their relative advantages and disadvantages as compared to the chemical coagulants. Future research areas have also been identified that may ultimately lead to the large-scale commercial application of natural coagulants and will result in an environment-friendly and sustainable solution to the problems created by industrial effluents and synthetic chemical coagulants.

Graphical Abstract


  • Synthetic coagulants have been very commonly used for treatment of industrial wastewater, despite their known disadvantages, esp. the medical issues by leftover aluminium in water;
  • Natural coagulants have been studied as an alternative and have advantages such as biodegradability, cost, etc. over synthetic coagulants;
  • Natural coagulants have not yet been used at a large scale for industrial applications, despite a large number of literature studies;
  • The challenges faced by the natural coagulants have been highlighted and once overcome, will hopefully provide a more environment-friendly alternative to the synthetic coagulants. 


Main Subjects

Aboulhassan, M.A.; Souabi, S.; Yaacoubi, A.; Baudu, M., (2014). Treatment of paint manufacturing wastewater by the combination of chemical and biological processes. Int. J. Sci. Environ. Technol., 3 (5): 1747–1758 (12 pages).

Adebayo, A.G.; Akintoye, H.A.; Shokalu, A.O.; Olatunji, M.T., (2017). Soil chemical properties and growth response of Moringa oleifera to different sources and rates of organic and NPK fertilizers. Int. J. Recycl. Org. Waste Agricult., 6: 281–287 (7 pages).

Aguilar, M.I.; Saez, J.; Llorens, M.; Soler, A.; Ortuno, J.F.; Meseguer, V.; Fuentes, A., (2005). Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere, 58(1): 47-56 (10 pages).

Ahangarnokolaei, M.A.; Ganjidoust, H.; Ayati, B., (2017). Optimization of parameters of electrocoagulation/flotation process for removal of Acid Red 14 with mesh stainless steel electrodes. J. Water Reuse Desalination., 8(2): 278–292(15 pages).

Ahmad, A.L.; Wong, S.S.; Teng, T.T.; Zuhairi, A., (2008). Improvement of alum and PACl coagulation by polyacrylamides (PAMs) for the treatment of pulp and paper mill wastewater. Chem. Eng. J., 137(3): 510–517 (8 pages).

Ahmed, M.I.; Habib, M.; Habib, U.; Hai, A.; Khan, A.U., (2016). Analysis and treatment of tannery wastewater by using combined filtration and coagulation treatment process. Proc. Pak. Acad. Sci. B, 53(3): 179–183 (5 pages).

Ahmed, S.; Aktar, S.; Zaman, S.; Jahan, R.A.; Bari, M.L., (2020). Use of natural bio-sorbent in removing dye, heavy metal and antibiotic-resistant bacteria from industrial wastewater. Appl. Water Sci., 10:107 (10 pages).

Akyol, A., (2012). Treatment of paint manufacturing wastewater by electrocoagulation. Desalination., 285: 91-99 (9 pages).

Alavijeh, H.N.; Sadeghi, M.; Rajaeieh, M.; Moheb, A.; Sadani, M., (2017) Integrated ultrafiltration membranes and chemical coagulation for treatment of baker’s yeast wastewater. J. Membr. Sci. Technol., 7(2) (9 pages)

Al-Hamadani, Y.A.J.; Yusoff, M.S.; Umar, M.; Bashir, M.J.K.; Adlan, M.N., (2011). Application of psyllium husk as coagulant and coagulant aid in semi-aerobic landfill leachate treatment. J. Hazard. Mater., 190(1–3): 582–587 (6 pages).

Aliyu, L.; Mukhtar, L.W.; Abba, S.I. (2015). Evaluation of coagulation efficiency of natural coagulants (Moringa Oleifera, Okra) and alum, for Yamuna Water Treatment. Int. J. Adv. Res. Sci. Eng. 4: 825-833 (9 pages).

Almeida, C.A.; Souza, M.T.F. De; Freitas, T.K.F.S.; Geraldino, H.C.L.; Garcia, J.C., (2017). Vegetable residue of Chayote (Sechium edule SW.) as a natural coagulant for treatment of textile wastewater. Int. J. Energy Water Resour., 1(1): 37–46 (10 pages).

Altaher, H; Alghamdi, A., (2011). Enhancement of quality of secondary industrial wastewater effluent by coagulation process: a case study. J. Environ. Protect. Ecol., 2(9): 1250–1256. (7 pages).

Alwi, H.; Idris, J.; Musa, M.; Halim, K.; Hamid, K., (2013). A preliminary study of banana stem juice as a plant-based coagulant for treatment of spent coolant wastewater, J. Chem., 2013 (7 pages).

Ameena, K.; Dilip, C.; Saraswathi, R.; Krishnan, P.N.; Sankar, C.; Simi, S.P., (2010). Isolation of the mucilages from Hibiscus rosasinensis linn and Okra (Abelmoschus Esculentus linn.) and studies of the binding effects of the mucilages. Asian Pac. J. Trop. Med., 3(7): 539–543 (5 pages).

Amuda, O. S.; Amoo, I. A., (2007). Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater., 141(3): 778–783 (6 pages).

Anastasakis, K.; Kalderis, D.; Diamadopoulos, E., (2009). Flocculation behavior of mallow and okra mucilage in treating wastewater. Desalination. 249(2): 786–791 (6 pages).

Ang, W.L.; Mohammad, A.W., (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. J. Clean. Prod., 262: 121267.  

Anteneh, W.; Sahu, O.P., (2014). Natural coagulant for the treatment of food industry waste water, Int. Lett. Nat. Sci., 9: 27–35 (9 pages).

Aravind, J.; Kanmani, P.; Sudha, G.; Balan, R., (2016). Optimization of chromium(VI) biosorption in industrial effluents using gooseberry seeds by response surface methodology. Global J. Environ. Sci. Manage., 2(1): 61-68 (8 pages).

Ariffin, M.; Hassan, A.; Li T.P.; Noor, Z.Z., (2009). Coagulation and flocculation treatment of wastewater in textile industry by using chitosan. J. Chem. Nat. Resour. Eng., 4(1): 43–53 (11 pages).

Ashmawy, M.A.; Moussa, M.S.; Ghoneim, A.K.; Tammam, A., (2012). Enchancing the efficiency of primary sedimentation in wastewater treatment plants with the application of Moringa Oleifera seeds and quicklime. J. Am. Sci., 8(2): 494–502 (9 pages).

Ashrafi, O.; Yerushalmi, L.; Haghighat, F., (2015). Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. J Environ.  Manage., 158: 146–157 (12 pages).

Awad, M.; Li, F.; Hongtao, W., (2013). Application of natural clays and poly aluminium chloride (PAC) for wastewater treatment. Int. J. Recent Res. Appl. Sci., 15(2): 287–291 (5 pages).

Awang, N.A.; Aziz, H.A., (2012). Hibiscus rosa-sinensis leaf extract as coagulant aid in leachate treatment. Appl. Water Sci., 293–298 (6 pages).

Ayangunna, R.R.; Saidat, O.G.; Abdulwahab, G., (2016). Coagulation-flocculation treatment of industrial wastewater using tamarind seed powder. Int. J. Chemtech. Res., 9(5): 771–780 (10 pages).

Azhar, A.W.M.; Hara, H.; Johari, M.M.N.M., (2016). A review on genetically engineered natural coagulant based on Moringa Oleifera for turbidity removal. Malay. J. Civil Eng., 28 (1): 26–34 (9 pages).

Babarao, T.D.; Verma, S., (2015). Coal washery wastewater treatment using natural coagulants and chemical precipitation, Int. J. Sci. Res., 4(6): 1877–1881 (5 pages).

Bangar, C.; Mhaske, P.; Parasur, V.; Pawar, S., (2017). Comparative study of removal of dairy waste characteristics by using various natural and chemical coagulants, Int. J. Res. Adv. Technol. Special Issue: National Conference “MOMENTUM-17”, 14th & 15th February (3 pages).

Behera, B.; Balasubramanian, P., (2019). Natural plant extracts as an economical and ecofriendly alternative for harvesting microalgae.Bioresour. Technol., 283: 45–52(8 pages).

Beltrán-Heredia, J.; Sánchez-Martín, J.; Rodríguez-Sánchez; M.T., (2011). Textile wastewater purification through natural coagulants. Appl. Water Sci., 1: 25–33 (9 pages).

Bhatia, S.; Othman, Z.; Ahmad, A.L., (2007). Pretreatment of palm oil mill effluent (POME) using Moringa oleifera seeds as natural coagulant. J. Hazard. Mater., 145(1–2): 120–126 (6 pages).

Bhuptawat, H.; Folkard, G. K.; Chaudhari, S., (2007). Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. J. Hazard. Mater., 142(1–2): 477–482 (6 pages).

Bhutada, D. S.; Datar, M. T.; Kaul, S. N., (2006). Use of herbal coagulant for primary treatment of dairy wastewater.  Int. J. Res. Eng. Mag.PC 22 (1): 139-148 (10 pages).

Bidhendi, G.R.N.; Torabian, A.; Ehsani, H.; Razmkhah, N., (2007). Evaluation of industrial dyeing wastewater treatment with coagulants and polyelectrolyte as a coagulant aid. Iran J. Environ. Health Sci. Eng., 4 (1): 29–36 (8 pages).

Bogacki, J.; Naumczyk, J.; Marcinowski, P.; Kucharska, M., (2011). Treatment of cosmetic wastewater using physicochemical and chemical methods. Chemik, 65 (2): 94-97 (4 pages).

Brito, A.G.; Peixoto, J.; Oliveira, J.M.; Oliveira, J.A.; Costa, C.; Nogueira, R.; Rodrigues, A., (2004). Brewery and Winery Treatment: some focal points of design and operation, In: Oreopoulou, V.; Russ, W. (eds) Utilization of By-Products and Treatment of Waste in the Food Industry. Springer, Boston, MA., 109-131 (22 pages).

Bustillo-Lecompte, C.F.; Mehrvar, M., (2015). Slaughterhouse wastewater characteristics, treatment, and management in the meat processing industry: A review on trends and advances. J. Environ. Manage., 161: 287–302 (16 pages).

Carballa, M.; Omil, F.; Lema, J.M., (2005). Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res., 39(19): 4790–4796 (7 pages).

Carpinteyro-Urban, S.; Vaca, M.; Torres, L.G., (2012). Can vegetal biopolymers work as coagulant-flocculant aids in the treatment of high-load cosmetic industrial wastewaters? Water Air Soil Pollut., 223(8): 4925–4936 (12 Pages).

Chaibakhsh, N.; Ahmadi, N.; Zanjanchi, M.A., (2014). Use of Plantago major L. as a natural coagulant for optimized decolorization of dye-containing wastewater. Ind. Crops Prod., 61: 169–175 (7 pages).

Chaudhari, P.K.; Majumdar, B.; Choudhary, R.; Yadav, D.K.; Chand, S., (2010). Treatment of paper and pulp mill effluent by coagulation. Environ. Technol., 31(8): 357–363 (7 pages).

Chhonkar, P.K.; Datta, S.P.; Joshi, H.C.; Pathak, H., (2000). Impact of industrial effluents on soil health and agriculture - Indian experience: Part I – Distillery and paper mill effluents. J. Sci. Ind. Res., 59 (5): 350–361 (12 pages).

Chonde, S.; Raut, P., (2017). Treatment of dairy wastewater by Moringa Oleifera seeds. World J. Pharm. Res., 6(8): 1484-1493 (10 pages).

Daverey, A.; Tiwari, N.; Dutta, K., (2019). Utilization of extracts of Musa paradisica (banana) peels and Dolichos lablab (Indian bean) seeds as low-cost natural coagulants for turbidity removal from water.Environ. Sci.  Pollut. Res., 26: 34177–34183 (7 pages).

De Godos, I.; Guzman, H.O.; Soto, R.; García-Encina, P.A.; Becares, E.; Muñoz, R.; Vargas, V.A., (2011). Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresour. Technol., 102(2): 923–927 (5 pages).

De Souza, M.T.F.; Ambrosio, E.; De Almeida, C.A.; De Souza Freitas, T.K.F.; Santos, L.B.; De Cinque Almeida, V.; Garcia, J.C., (2014). The use of a natural coagulant (Opuntia ficus-indica) in the removal for organic materials of textile effluents. Environ. Monit. Assess., 186(8): 5261–5271 (11 pages).

Dehghani, M.; Alizadeh, M.H., (2016). The effects of the natural coagulant Moringa oleifera and alum in wastewater treatment at the Bandar Abbas Oil Refinery. Environ. Health Eng. Manage., 3(4): 225–230 (6 pages).

Dhivya, S.; Ramesh, S.T.; Gandhimathi, R., (2017). Performance of natural coagulant extracted from Plantago ovata seed for the treatment of turbid water. Water Air Soil Pollut., 228: 423 (11 pages).

Dotto, J.; Fagundes-Klen, M.R.; Veit, M.T.; Palacio, S.M.; Bergamasco, R., (2019). Performance of different coagulants in the coagulation/flocculation process of textile wastewater. J. Clean. Prod., 208: 656-665 (10 pages).

Ebeling, J.M.; Sibrell, P.L.; Ogden, S.R.; Summerfelt, S.T., (2003). Evaluation of chemical coagulation Á flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacult. Eng., 29(1-2): 23–42 (20 pages).

Ebrahimi, A.; Taheri, E.; Pashaee, A.; Mahdavi, M., (2014). The application of Polyaluminium Ferric Chloride for Turbidity and Color Removal from Low to Medium Turbid Water. Arch. Hyg. Sci. 3(1) :12-20 (9 pages).

Effendi, H.; Delima Sari, R.; Hasibuan, S., (2015). Moringa oleifera as coagulant for batik effluent treatment. IAIA15 Conference Proceedings, 15: 1–6 (6 pages).

El-Awady, M.; El-Ghetany, H.; Aboelghait, K.; Dahaba, A., (2019). Zero liquid discharge and recycling of paper mill industrial wastewater via chemical treatment and solar energy in Egypt. Egypt J. Chem., 62: 37-45. (9 pages).

El-Gohary, F.; Tawfik, A., (2009). Decolorization and COD reduction of disperse and reactive dyes wastewater using chemical-coagulation followed by sequential batch reactor (SBR) process. Desalination., 249(3): 1159–1164 (6 pages).

El-Naas, M.H.; Al-Zuhair, S.; Al-Lobaney, A.; Makhlouf, S., (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. J. Environ. Manage., 91(1): 180–185 (6 pages).

El Samrani, A.G.; Lartiges, B.S.; Villiéras F., (2008). Chemical coagulation of combined sewer overflow: Heavy metal removal and treatment optimization. Water Res., 42 (4-5): 951- 960 (10 pages).

Elsheikh, M., Al-Hemaidi, W.K., (2013). Approach in Choosing Suitable Technology for Industrial Wastewater Treatment. J.  Civil Environ. Eng., 2(5) (10 pages).

Fabres, R.B.; da Luz, R.B.; Soliman, M.C.; Staggemeier, R.; Fleck, J.D.; Nascimento, C.A.D.; Spilki, F.R., (2017). Evaluation of virus recovery methods and efficiency of tannin-derived coagulants in removing total coliforms, E. coli and enteric viruses in effluents of a domestic sewage treatment plant.Water Sci. Technol., 76(7-8): 2195–2202(8 pages).

Fattah, A.; Bakar, A.; Halim, A.A., (2013). Treatment of Automotive Wastewater by Coagulation- Flocculation Using Poly-aluminum Chloride (PAC), Ferric Chloride (FeCl3) and Aluminum Sulfate (alum), AIP Conference Proceedings, 1571: 524-529 (6 pages).

Feria-Diaz, J.J.; Tavera-Quiroz, M.J.; Vergara-Suarez, O., (2018). Efficiency of Chitosan as a Coagulant for Wastewater from Slaughterhouses. Ind. J. Sci. Technol., 11(3): 1–12 (12 pages).

Ferrari, C.T.R.R.; Genena, A.K.; Lenhard, D.C., (2016). Use of natural coagulants in the treatment of food industry effluent replacing ferric chloride: a review. Científica Jaboticabal, 44(3): 310-317 (8 pages).

Fitzpatrick, C.S.; Fradin, E.; Gregory, J., (2004) Temperature effects on flocculation, using different coagulants. Water Sci. Technol., 50:171–175 (5 pages)

Folkard, G.; Sutherland, J.; Al-khalili, R. (1995). Natural coagulants — a sustainable approach. 21ST WEDC Conference sustainability of water and sanitation systems. 263-265 (3 pages).

Gandhi, N.; Sirisha, D.; Sekhar, K.B.C.’ (2013). Biodepollution of paint manufacturing industry wastewater containing chromium by using coagulation process. J. Arts Sci. Commer., 4(Vi): 110-118 (9 pages).

Gaurang, P; Punita, P., (2012). An evaluation of turbidity removal from industrial waste by natural coagulants obtained from some plants. J. Environ. Res. Develop., 7(2): 1043–1046 (4 pages).

Ghafari, S.; Aziz, H.A.; Isa, M.H.; Zinatizadeh, A.A., (2009). Application of Response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. J. Hazard. Mater., 163 (2–3): 650–656 (7 pages).

Green, R.E.; Newton, I.; Shultz, S.; Cunningham, A.A.; Pain, D.J.; Prakash, V.; Newtont, I.A.N.; Shultz, S.; Cunningham, A.A.; Gilbert, M., (2004). Diclofenac Poisoning as a Cause of Vulture Population Declines across the Indian Subcontinent. Proc. R. Soc. Lon. B, 271: S458-S460 (3 pages).

Gregory, J.; Duan, J., (2001). Hydrolyzing metal salts as coagulants. Pure Appl. Chem., 73(12): 2017–2026 (10 pages).

Hamawand, I., (2015). Review of wastewater treatment chemicals and organic chemistry alternatives for abattoir effluent, Aus. Meat Processor Corp. (1 page).

Haydar, S.; Aziz, J.A. (2009). Coagulation-flocculation studies of tannery wastewater using combination of alum with cationic and anionic polymers. J. Hazard. Mater., 168(2–3): 1035–1040 (6 pages).

Hemapriya, G.; Abhinaya, R.; Dhinesh, K.S. (2015). Textile Effluent Treatment Using Moringa Oleifera. Int. J. Innov. Res. Dev., 4(4): 385–390  (6 pages).

Hiremath, P.J.; Farmer, A.; Cannon, S.B.; Woodward, J.; Kudapa, H.; Tuteja, R.; Kumar, A.; Bhanuprakash, A.; Mulaosmanovic, B.; Gujaria, N.; Krishnamurthy, L.; Gaur, P.M.; Kavikishore, P.B.; Shah, T.; Srinivasan, R.; Lohse, M.; Xiao, Y.; Town, C.D.; Cook, D.R.; May, G.D.; Varshney, R.K., (2014). Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa.  Plant Biotechnol. J., 9(8): 922-931 (10 Pages).

Imran, Q.; Hanif, M.A.; Riaz, M.S.; Noureen, S.; Ansari, T. M.; Bhatti, H.N., (2012). Coagulation/ Flocculation of tannery wastewater using immobilized chemical coagulants, J. Environ. Prot. Ecol. 13(3A): 1948-1957 (10 pages).

Irfan, M.; Butt, T.; Imtiaz, N.; Abbas, N.; Khan, R.A.; Shafique, A., (2017). The removal of COD, TSS and colour of black liquor by coagulation–flocculation process at optimized pH, settling and dosing rate. J. Arab. Chem., 10(2): S2307–S2318 (12 pages).

Jagaba, A.H.; Kutty, S.R.M.; Hayder, G.; Latiff, A.A.A.; Aziz, N.A.A.; Umaru, I.; Ghaleb, A.A.S.; Abubakar, S.; Lawal, I.M.; Nasara, M.A., (2020). Sustainable use of natural and chemical coagulants for contaminants removal from palm oil mill effluent: A comparative analysis. Ain Shams Eng. J., (in press) (10 pages).

Jaseela, L.A.; Chadaga, M., (2015). Treatment of Dairy Effluent Using Cicer Arietinum, Int. J. Innov. Res. Sci. Engg. Technol., 4(6): 4881-4885 (5 pages).

Jeon, J.R.; Kim, E.-J.; Kim Y.-M.; Murugesan, K.; Kim, J.-H.; Chang, Y.-S., (2009). Use of grape seed and its natural polyphenol extracts as a natural organic coagulant for removal of cationic dyes. Chemosphere, 77(8): 1090–1098 (9 pages).

Jiang, J.; Lloyd, B., (2002). Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res., 36(6): 1397–1408 (12 pages).

Joudah, R.A., (2014). Effect of Temperature on Floc Formation Process Efficiency and Subsequent Removal in Sedimentation Process. J. Eng. Sustain. Dev., 18 (4): 1813–1822 (10 pages).

Kani, K., (2016). Accessing the Suitability of Using Banana Pith Juice as a Natural Coagulant for Textile Wastewater Treatment. Int. J. Sci. Eng. Res., 7(4): 260-264 (5 pages).

Kansal, S.K.; Kumari, A., (2014). Potential of M. oleifera for the treatment of water and wastewater. Chem. Rev., 114(9): 4993-5010 (18 pages).

Karamany, H.E, (2010). Study for industrial wastewater treatment using some coagulants. Fourteenth IWTC 14 2010, Cairo, Egypt. 479-482 (4 pages).

Karoliny, T.; Souza, F.; Almeida, C.A. (2018). Textile Science and Clothing Technology book series (TSCT) Detox Fashion.

Katayon, S.; Megat, M.N.M.J.; Kien Tat, W.; Abdul Halim, G.; Thamer, A.M.; Badronisa, Y., (2007). Effect of natural coagulant application on microfiltration performance in treatment of secondary oxidation pond effluent. Desalination. 204 (1-3): 204–212 (9 pages).

Kazi, T.; Virupakshi, A.; Scholar, M.T., (2013). Treatment of tannery wastewater using natural coagulants. Int. J. Inov. Res. Sci. Eng. Technol., 2(8): 4061–4068 (8 pages).

Kobya, M.; Can, O.T.; Bayramoglu, M., (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J. Hazard. Mater. 100(1-3): 163–178 (16 pages).

Kumar Dutta, P.; Dutta, J. Tripathi, V.S., (2004). Chitin and chitosan: Chemistry, properties and applications. J. Sci. Indus. Res., 63: 20–31 (12 pages).

Kumar, S.; Dagnoko, S.; Haougui, A.; Ratnadass, A.; Pasternak, D.; Kouame, C., (2010). Okra (Abelmoschus spp.) in West and Central Africa: Potential and progress on its improvement. Afr. J. Agricul. Res., 25: 3590–3598 (9 Pages).

Kumar, V.; Othman, N.; Asharuddin, S., (2017). Applications of Natural Coagulants to Treat Wastewater − A Review. MATEC Web of Conferences, 103 (9 Pages).

Lamont, W. J., (1999). Okra - A versatile vegetable crop. Hort. Technol., 9(2): 179–184 (6 pages).

Liang, Z.; Wang, Y.; Zhou, Y.; Liu, H., (2009). Coagulation removal of melanoidins from biologically treated molasses wastewater using ferric chloride. Chem. Eng. J., 152 (1): 88–94 (7 pages).

Loloei, M.; Nekonam, G.; Alidadi, H.; Kor, Y., (2014). Study of the coagulation process in wastewater treatment of dairy industries. Int. J. Environ. Heal. Eng. 3 (1):17-21 (5 Pages).  

Madhavi, P.T.; Srimurali, M.; Prasad, N.K., (2014). Color Removal from Industrial Waste Water Using Alum. J. Environ. Res. Dev., 8(4): 890–894 (5 pages).

Majumder, D.; Maity, J.P.; Tseng, M.-J.; Nimje, V.R.; Chen, H.-R.; Chen, C.-C.; Chang, Y.-F.; Yang, T.-C.; Chen, C.-Y., (2014). Electricity Generation and Wastewater Treatment of Oil Refinery in Microbial Fuel Cells Using Pseudomonas putida. Int. J. Mol. Sci., 15(9): 16772-16786 (15 pages).

Malerba, M.; Cerana, R., (2018). Recent Advances of Chitosan Applications in Plants. Polym., 10 (118) (10 Pages).

Maya, S.R.M.R.; Mariam I.K.N.A.; Hashim, M.K.A., (2014). Efficiency of using commercial and natural coagulants in treating car wash wastewater treatment. Aust. J. Basic Appl. Sci., 8 (16): 227–234 (8 pages).

Meraz, K.A.S.; Vargas, S.M.P.; Maldonado, J.T.L.; Bravo, J.M.C.; Guzman, M.T.O.; Maldonado, E.A.L., (2016). Eco-friendly innovation for nejayote coagulation–flocculation process using chitosan: Evaluation through zeta potential measurements. Chem. Eng. J., 284: 536–542(7 pages).

Merzouk, B.; Gourich, B.; Madani, K.; Vial, C; Sekki, A. (2011). Removal of a disperse red dye from synthetic wastewater by chemical coagulation and continuous electrocoagulation. A comparative study. Desalination. 272(1–3): 246–253 (8 pages).

Miller S.M.; Fugate E.J.; Craver V.O.; Smith J.A.; Zimmerman J.B., (2008). Toward understanding the efficacy and mechanism of Opuntia spp. as a natural coagulant for potential application in water treatment. Environ. Sci. Technol. 42(12): 4274–4279 (6 pages).

Mishra, A.; Bajpai, M., (2014). Flocculation behavior of model textile wastewater treated with a food grade polysaccharide with a food grade polysaccharide. J. Hazard. Mater., 118(1-3): 213-217 (5 pages).

Mohamed, R.M.S.R.; Rahman, N.A.; Kassim, A.H.M., (2014). Moringa Oleifera and Strychnos Potatorum Seeds as natural coagulant compared with synthetic common coagulants in treating car wash wastewater: case study. Asian J. Appl. Sci., 2(5): 693–700 (8 pages).

Mohammadtabar, F.; Khorshidi, B.; Hayatbakhsh, A.; Sadrzadeh, M. (2019). Integrated coagulation-membrane processes with zero liquid discharge (ZLD) configuration for the treatment of oil sands produced water. Water, 11(7): 1348 (12 pages).

Mosaddeghi, M.R.; Shariati, F.P.; Yazdi, S.A.V.; Bidhendi, G.N., (2020). Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using Ocimum basilicum. Environ. Technol., 41(1): 100-108 (9 pages).

Muralimohan, N.; Palanisamy, T.; Vimaladevi, M.N., (2014). Experimental study on removal efficiency of blended coagulants in textile wastewater treatment. Int. J. Res. Eng. Technol., 2(2): 15-20 (6 Pages).

Muthuraman, G.; Sasikala S., (2014). Turbidity removal from drinking water using natural coagulant. J. Ind. Eng. Chem., 20(4): 1727-1731 (5 pages).

Narmatha, M.; Sangavi, S.K.; Sripavithra, G., (2017). Effluent treatment of Sago wastewater by using natural coagulants. Int.J. Interndiscip. Res.,3(9): 53-59 (7 pages).

Nath, A.; Mishra, A.; Pande, P.P., (2020). A review of natural polymeric coagulants in wastewater treatment. Mater. Today: Proc., (in press) (5 pages).

Naumczyk, J.; Bogacki, J.; Marcinowski, P.; Kowalik, P., (2014). Cosmetic wastewater treatment by coagulation and advanced oxidation processes. Environ. Technol., 35(5): 541–548 (8 pages).

Ngan, N.V.C.; Thuy, L.T.D.; Trung, D.M., (2017). Apply Cassia Fistula seed gum as auxiliary bio-coagulant for fish processing wastewater treatment, Int. J. Adv. Sci. Res. Manage., 2(6): 46-51 (6 pages).

Neethu, P.; Navami. D; Anitha, K., (2017). Treatment of dairy wastewater by Moringa oleifera as natural coagulant. Int. J. Adv. Res. Innovative Ideas Educ., 3(4): 1448–1453.  (6 pages).

Nharingo, T.; Moyo, M., (2016). Application of Opuntia ficus-indica in bioremediation of wastewaters: A critical review. J. Environ. Manage., 166: 55–72 (18 pages).

Nicholas, H.; Hoong, J.; Ismail, N., (2018). Removal of Dye in Wastewater by Adsorption- Coagulation Combined System with Hibiscus sabdariffa as the Coagulant, 1008., 9th Eureca 2017 Int. Eng. Res. Conf. MATEC Web of Conferences. 152 (14 pages).

Niquette, P.; Monette, F.; Azzouz, A.; Hausler, R., (2004). Impacts of substituting aluminum-based coagulants in drinking water treatment. Water Qual Res. J. Can., 39(3): 303–310 (8 pages).

Oaks, J.L.; Gilbert, M.; Virani, M.Z.; Watson, R.T.; Meteyer, C.U.; Rideout, B.A.; Khan, A.A. (2004). Diclofenac residues as the cause of vulture population decline in Pakistan. Nat., 427(6975): 630–633 (4 pages).

Okuda, T.; Baes, A.U.; Nishijima, W.; Okada, M., (2001). Coagulation mechanism of salt-extracted active component in Moringa Oleifera seeds. Water Res., 35(3): 830–834 (5 Pages).

Omar, F.M.; Rahman, N.N.N.A.; Ahmad, A., (2008). COD reduction in semiconductor wastewater by natural and commercialized coagulants using response surface methodology. Water Air Soil Pollut., 195(1–4): 345–352 (8 pages).

Pal, A.; Gin, K.Y.H.; Lin, A.Y.C.; Reinhard, M., (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Sci. Total Environ., 408(24): 6062–6069 (8 pages).

Pallavi, N., Mahesh, S., (2013). Feasibility Study of Moringa Oleifera as a Natural Coagulant for the treatment of Dairy Wastewater. Int. J. Eng. Res., 2(3): 200–202 (3 pages).

Parmar, K.; Dabhi, Y.; Patel, R.; Prajapati, S., (2012). Effectiveness of Moringa oleifera as natural coagulant aid for waste water treatment of dairy industry. Asian J. Environ. Sci., 7(2): 167-171 (5 pages).

Patel, H.; Vashi, R.T., (2013). Comparison of naturally prepared coagulants for removal of cod and color from textile wastewater. Glob. NEST J., 15(4): 522-528 (7 pages).

Patil, C.; Hugar, M., (2015). Treatment of dairy wastewater by natural coagulants. Int. Res. J. Eng. Technol., 2(4): 1120-1125 (6 pages).

Paula, H.M. De; Sangoi, M.; Ilha, D.O.; Andrade, L.S., (2016). Chemical coagulants and Moringa oleifera seed extract for treating concrete wastewater, Acta Scient. Technol., 38(1): 57-64 (8 pages).

Perren, W.; Wojtasik, A.; Cai, Q., (2018). Removal of microbeads from wastewater Using electrocoagulation. ACS Omega, 3(3): 3357–3364 (8 pages).

Prabhakaran, G.; Manikandan, M.; Boopathi, M., (2020). Treatment of textile effluents by using natural coagulants. Mater. Today: Proc., (in press) (5 pages).

Prasad, S.V.M.; Rao, B.S., (2016). Influence of plant-based coagulants in wastewater treatment. Int. J. Lat. Technol. Eng. Manage. Appl. Sci., V(Iii): 45–48 (4 pages).

Prodanovic, J.M.; Sciban, M.B.; Antov, M.G.; Kukic, D.V.; Vasic, V.M., (2015). Treatment of sugar beet extraction juice stillage by natural coagulants extracted from common bean. Acta Period. Technol., 46: 77-89 (13 pages).

Prodanović, J.; Šćiban, M.; Antov, M., (2013) Improvement of wastewater treatment by use of natural coagulants.  J. Ecol. Dev. Environ. People, 2(2): 22-28 (7 pages).

Quintero-Jaramillo, J.A.; Murillo-Arango, W.; Ceron-Salazar, I.X., (2016). Use of thermal water as a natural coagulant for domestic wastewater sustainable treatment. Rev. Fac. Ing., 26 (44), 35–45 (11 pages).

Ramavandi, B.; Farjadfard, S., (2016). Removal of chemical oxygen demand from textile wastewater using a natural coagulant. Korean J. Chem. Eng., 31: 81-87 (7 pages).

Rameshraja, D.; Suresh, S., (2011). Treatment of tannery wastewater by various oxidation and combined processes. Int. J. Environ. Res., 5(2): 349–360 (12 pages).

Rao, L.N., (2015). Coagulation and Flocculation of Industrial Wastewater by Chitosan, Int. J. Eng. Appl. Sci., 2(7): 50–52 (3 pages).

Rathi, A.K.A.; Puranik, S.A., (2002). Chemical Industry Wastewater Treatment Using Adsorption. J. Sci. Ind. Res., 61: 53–60 (8 pages).

Rebah, F.B.; Siddeeg, S.E., (2017). Cactus an eco-friendly material for wastewater treatment : A review, J. Mat. Environ. Sci., 8(5): 1770–1782 (13 pages).

Renault, F.; Sancey, B.; Badot, P.M.; Crini, G. (2009). Chitosan for coagulation/flocculation processes - An eco-friendly approach. Eur. Polym. J., 45(5): 1337–1348 (12 pages).

Rizzo, L.; Lofrano, G.; Grassi, M.; Belgiorno, V., (2008). Pre-treatment of olive mill wastewater by chitosan coagulation and advanced oxidation processes. Sep. Purif. Technol., 63(3): 648–653  (6 pages).

Saini, G. (2017). Benincasa hispida coagulant for water treatment and methods thereof. Patent App. 201711026431, India.

Saha, N.K.; Balakrishnan, M.; Batra, V.S., (2005). Improving industrial water use: Case study for an Indian distillery. Resour. Conserv. Recycl., 43(2): 163–174 (12 pages).

Saharudin, N.F.A.B.; Nithyanandam, R., (2014). Wastewater Treatment by using Natural Coagulant. 2nd Eureca. 2–3 (3 pages).

Sahu, O. P.; Chaudhari, P.K., (2013). Review on Chemical treatment of Industrial Wastewater. J. Appl. Sci. Environ. Manage., 17(2): 241–257 (17 pages).

Salameh, W.K.B., (2015). Treatment of olive mill wastewater by ozonation and electrocoagulation processes. Civil Environ. Res., 7(2): 80–91 (12 pages).

Saleem, M.; Bachmann, R.T., (2019). A contemporary review on plant-based coagulants for application in water treatment. J. Ind. Eng. Chem., 72: 281-297 (17 pages).

Saritha, V.; Karnena, M.K.; Dwarapureddi, B.K., (2020). Competence of blended coagulants for surface water treatment. Appl. Water Sci., 10: 20 (11 pages).

Sarkar, B.; Chakrabarti, P.P.; Vijaykumar, A.; Kale, V., (2006). Wastewater treatment in dairy industries-possibility of reuse. Desalination., 195 (1–3): 141-152(12 pages).

Sarparastzadeh, H.; Saeedi, M.; Naeimpoor, F.; Aminzadeh, B., (2007). Pretreatment of municipal wastewater by enhanced chemical coagulation. Int. J. Environ. Res., 1(2): 104-113 (8 pages).

Savant, V.D.; Torres, J.A., (2000). Chitosan based coagulating agents for treatment of Cheddar cheese whey. Biotechnol. Prog., 16: 1091–1097 (7 pages).

Sehar, S.; Aamir, R.; Naz, I.; Ali, N.; Ahmed, S., (2013). Reduction of Contaminants (Physical, Chemical, and Microbial) in Domestic Wastewater through Hybrid Constructed Wetland. Microbiol., Article ID 350260 (9 pages).

Semblante, G.U.; Lee, J.Z.; Lee, L.Y.; Ong, S.L.; Ng, H.Y., (2018). Brine pre-treatment technologies for zero liquid discharge systems.Desalination., 441: 96–111 (16 pages).

Semerjian, L.; Ayoub, G.M., (2003).  High-pH-magnesium coagulation-flocculation in wastewater treatment. Adv. Environ. Res., 7(2): 389–403 (5 pages).

Shamsnejati, S.; Chaibakhsh, N.; Pendashteh, A.R.; Hayeripour, S., (2015). Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment. Ind. Crop Prod., 69: 40–47 (8 pages).

Shan, T.C.; Matar, M.A.; Makky, E.A.; Ali, E.N., (2017). The use of Moringa oleifera seed as a natural coagulant for wastewater treatment and heavy metals removal. Appl. Water Sci., 7(3): 1369–1376 (8 pages).

Shankar, D.; Sivakumar, D.; Thiruvengadam, M.; Kumar, M.M., (2014). Colour removal in a textile industry wastewater using Coconut coir pith. Pollut. Res., 33(3): 499-503 (5 pages).

Sheikh., M.S.; Vij. R.; Dharaniraj, B., (2016). Abattoir wastewater treatment using Cicer arentinum seed powder as natural coagulant, J. Chem. Pharm. Sci., 9(4): 2610–2612 (3 pages).

Silva, M.J.M.; Paterniani, J.E.S.; Francisco, A.R., (2013). Application of Moringa Oleifera natural coagulant for clarification and disinfection of treated wastewater in wetlands and multistage filtration. Afr. J. Agric. Res., 8(24): 3102–3106 (5 pages).

Sivakumar, D., (2013). Adsorption study on municipal solid waste leachate using Moringa oleifera seed, Int. J. Environ. Sci. Technol., 10: 113-124 (12 pages).

Sivakumar, D.; Balasundaram, V.; Venkatesan, G.; Saravanan, S.P., (2014). Effect of Tamarind kernel powder for treating dairy industry wastewater, Pollut. Res., 33 (3): 519-523 (5 pages).

Sivakumar, D., (2015). Hexavalent chromium removal in a tannery industry wastewater using rice husk silica, Global J. Environ. Sci. Manage., 1 (1): 27-40 (14 pages).

Sivakumar, D.; Shankar, D.; Sundaram, S.J., (2016). Treating dairy industry effluent using orange peel powder, J. Chem. Pharm. Sci., 9 (3): 1550-1552 (3 pages).

Somchit, M.N.; Mak, J.H.; Bustamam, A.A.; Zuraini, A.; Arifah, A.K.; Adam, Y.; Zakaria, Z.A., (2012). Zerumbone isolated from Zingiber zerumbet inhibits inflammation and pain in rats. J. Med. Plant Res., 6(2): 177-180 (4 pages).

Srinivasan, P.T.; Viraraghavan, T.; Subramanian, K.S., (1999). Aluminium in drinking water. Water SA, 25(1): 47-55 (9 pages).

Suarez, S.; Lema, J.M.; Omil, F., (2009). Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresour. Technol., 100(7): 2138–2146 (9 pages).

Sulaiman, M.; Umar, D.M.; Aliyu, B.; Manan, F.A., (2017). Moringa oleifera seed as alternative natural coagulant for potential application in water treatment : A review. J. Adv. Res. Mat. Sci., 56: 11-21    (11 Pages).

Sundaresan, A.; Anu, N., (2016). Feasibility of Natural Coagulant for the Treatment of Dairy Wastewater. Int. J. Sci. Eng. Res., 7(4): 245-249 (5 pages).

Tariq. A.; Athar, M.; Ara. J.; Sultana. V.; Ehteshamul-Haque. S.; Ahmad. M., (2015). Biochemical evaluation of antioxidant activity in extracts and polysaccharide fractions of seaweeds, Global J. Environ. Sci. Manage., 1 (1): 47-62 (16 pages).

Tezcan, U.U.; Koparal, A.S.; Bakir Ogutveren, U., (2009). Electrocoagulation of vegetable oil refinery wastewater using aluminum electrodes. J. Environ. Manage., 90(1): 428–433 (6 pages).

Thakur, S.S.; Choubey, S., (2014). Use of Tannin based natural coagulants for water treatment: An alternative to inorganic chemicals. Int. J. Chem. Technol. Res., 6(7): 3628–3634 (7 pages).

Thirugnanasambandham, K.; Sivakumar, V.; Maran, J.P., (2014). Bagasse wastewater treatment using biopolymer - A novel approach. J. Serb. Chem. Soc., 79(7): 897–909 (13 pages).

Tobajas, M.; Polo, A.M.; Monsalvo, V.M.; Mohedano, A.F.; Rodriguez, J.J., (2014). Analysis of the operating conditions in the treatment of cosmetic wastewater by sequencing batch reactors. Environ. Eng. Manage. J., 13(12): 2955–2962 (8 pages).

Tolkou, A.K; Zouboulis, A.I., (2014). Synthesis and coagulation performance of composite poly-aluminum-ferric-silicate-chloride coagulants in water and wastewater.  Desalination. Water Treat., 53: 3309-3318 (10pages).

Triques, C.C.; Fagundes-Klen, M.R.; Suzaki, P.Y.R.; Mateus, G.A.P.; Wernke, G.; Bergamasco, R.; Rodrigues, M.L.F., (2020). Influence evaluation of the functionalization of magnetic nanoparticles with a natural extract coagulant in the primary treatment of a dairy cleaning-in-place wastewater. J. Clean. Prod., 243: 118634.

Vanerkar, A.P.; Satyanarayan, S.; Satyanarayan, S., (2013). Treatment of Food Processing Industry Wastewater by a Coagulation / Flocculation Process. Int. J. Chem. Phy. Sci., 2: 63–72  (10 pages).

Verma, A.K.; Dash, R.R.; Bhunia, P., (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. J. Environ. Manage., 93(1): 154–168 (15 pages).

Verma, M.; Kumar, R.N., (2018). Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater. Water Reuse Desalination. 8(2): 234-243 (10 pages).

Vieira, A.; Vieira, M.; Marquetotti, A.; Vieira, S.; Vieira, M.F.; Silva, G.F. (2010). Use of Moringa oleifera seed as a natural adsorbent for wastewater treatment. Water Air Soil Pollut., 206: 273–281 (9 pages).

Vijayaraghavan, G.; Sivakumar, T.; Kumar, V.A., (2011). Application of plant based coagulants for wastewater treatment. Int. J. Adv. Eng. Res. Stud., 1(1): 88–92 (5 pages).

Walton, J.R., (2006). Aluminum in hippocampal neurons from humans with Alzheimer’s disease. Neurotoxicol., 27(3): 385–394  (10 pages).

Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M., (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym., 83(4): 1446–1456 (11 pages).

Wang, J.P.; Chen, Y.Z.; Wang, Y.; Yuan, S.J.; Yu, H.Q., (2011). Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology. Water Res., 45(17): 5633–5640 (8 pages).

Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H., (2018). Coagulation/flocculation in dewatering of sludge: A review. Water Res., 143: 608–631(23 pages).

Wei, Y.; Lu, J.; Dong, X.; Hao, J.; Yao, C., (2017). Coagulation performance of a novel poly-ferric-acetate (PFC) coagulant in phosphate-kaolin synthetic water treatment. Korean J. Chem. Eng., 34(10): 2641–2647 (7 pages).

WHO Guidelines, (2010). Aluminium in drinking water (23 pages).

Wolf, G.; Schneider, R.M.; Bongiovani, M.C.; Morgan Uliana, E.; Garcia Do Amaral, A., (2015). Application of coagulation/flocculation process of dairy wastewater from conventional treatment using natural coagulant for reuse. Chem. Eng. Trans., 43: 2041–2046 (6 pages).

Wong, S.S.; Teng, T.T.; Ahmad, A.L.; Zuhairi, A.; Najafpour, G., (2006). Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J. Hazard. Mater., 135(1–3): 378–388  (11 pages).

Wu, J.; Xiao, Y.Z.; Yu, H.Q., (2005). Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm. Bioresour. Technol., 96(12): 1357–1363 (7 pages).

Yin, C.Y., (2010). Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem., 45(9): 1437–1444  (8 pages).

Zhang, Z.; Jing, R.; He, S.; Qian, J.; Zhang, K.; Ma, G.; Chang, X.; Zhang, M.; Li, Y., (2018). Coagulation of low temperature and low turbidity water: Adjusting basicity of poly-aluminum chloride (PAC) and using chitosan as coagulant aid.Sep. Purific. Technol., 206: 131–139 (8 pages).

Zhu, G.; Zheng, H.; Chen, W.; Fan, W.; Zhang, P.; Tshukudu, T., (2012). Preparation of a composite coagulant: Polymeric aluminum ferric sulfate (PAFS) for wastewater treatment. Desalination. 285: 315–323 (9 pages).

Zouboulis A.; Tzoupanos, N., (2009). Polyaluminium silicate chloride-A systematic study for the preparation and application of an efficient coagulant for water or wastewater treatment. J. Hazard. Mater., 162(2-3): 1379-89 (11 pages).

Zouboulis, A.I.; Traskas, G., (2005). Comparable evaluation of various commercially available aluminium-based coagulants for the treatment of surface water and for the post-treatment of urban wastewater. J. Chem. Technol. Biotechnol., 80(10): 1136–1147 (12 pages).

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.