Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran


Building information modeling can help in predicting the energy efficiency in future based on dynamic patterns obtained by visualization of data. The aim of this study was to investigate the effective parameters of energy consumption using BIM technology which can evaluate the buildings energy performance. First, three forms of general states in the building were modeled to evaluate the proposed designs in Autodesk Revit Software. Then, the main building form for energy modeling and analysis was selected. Autodesk Revit 2020 software was also used to obtain the results of climate data analysis and building energy consumption index. Finally, the most optimal mode was selected by examining different energy consumption modes. The results showed that the use of building information modeling technology in adjusting the parameters affecting energy consumption can save energy cost up to 58.23% in block D. Energy cost savings for block C and the western lobby were obtained as 51.03% and 43.05%, respectively. Based on energy use intensity, energy cost savings for blocks C, D, and the western lobby were estimated as 16.67%, 16.30%, and 11%, respectively. The results of parametric studies on alternative schemes of energy use intensity optimization showed that 16.30% savings could be achieved by the base building model in a 30-year time horizon. Therefore, it was concluded that optimization of energy consumption would reduce the environmental pollutants emission and contribute to preservation and sustainability of the environment.

Graphical Abstract

Effective energy consumption parameters in residential buildings using Building Information Modeling


  • The results of parametric studies on optimization of energy use intensity alternative schemes show that there would be 16.30% saving for the base building model in a 30-year time horizon;
  • Analysis of the data show that application of building information modeling technology for adjusting the parameters affecting energy consumption can save up to 58.23% energy cost for block D. This value is 51.03% for block C and 43.05% for the western lobby;
  • Based on the results, based on the energy use intensity the savings for blocks C, D, and the western lobby would be 16.67%, 16.30%, and 11%, respectively.


Main Subjects

Citation Metrics & Captures

Google Scholar | Scopus Web of Science PlumX Metrics Altmetrics Mendeley |


©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.