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Approximately 2.4 million tons of bagasse are produced each year in Iran, most of 
which are currently treated as waste adding to serious environmental concerns. 
Application of bagasse for energy production is a sustainable solution to supply the 
required energy within the sugar refineries and export the surplus electricity to the 
grid. Currently, the energy demand in Iranian sugar mills is mainly supplied by fossil 
fuels (natural gas or mazut). Bagasse fluidized bed and fixed bed gasification plants 
would respectively lead to save 59,250 and 21,750 tons of CO2 annually, compared 
to gas power plants of the same scale. The present study aims to compare the 
environmental economic analysis of electricity generation in 10-MW gas-fired 
power plants with that electricity generation in bagasse gasification plants (with 
fluidized bed and fixed bed reactors) exemplarily in Iran. The bagasse fluidized 
bed gasification option (with IRR of 28.6%) showed the most promising economic 
viability compared to bagasse fixed bed gasification and gas power plant cases with 
IRR values of 25.09 and 21.94%, respectively. Furthermore, bagasse gasification 
options were potentially characterized by a better environmental performance 
compared to fossil-fuelled options. On the other hand, the obtained levelised cost 
of electricity at gas power plants (2 cents/kWh) was lower than the global range 
and lower than bagasse gasification cases (7-9 cents/kWh). The results revealed the 
vital need of biomass power plants to governmental support in order to compete 
with fossil power plants by participation of private sector.
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INTRODUCTION

The global sugar production in 2019 (181 million 
tons) accounts for about 80% sugar cane and 20% 
sugar beet (USDA, 2019). The largest sugar cane 
producer countries are Brazil, India, Thailand, China, 
Mexico and Pakistan, respectively (ISO, 2019). 
Around 88,300 hectare of sugar cane farm area in 
Khouzestan province of Iran is under cultivation 
with an average yield of 84.1 tons/hectare annually, 
producing 7.4 million tons of cane which is equal 
to sugar production capacity of 772,000 tons/year 
(ISFS, 2017). The current energy demand in the 
Iranian sugar plants is supplied by fossil fuels such 
as mazut and natural gas (NG) (Avami and Sattari, 
2007). On the other hand, the amount of bagasse 
produced in Iran reaches 2.44 million tons annually, 
which can be used to produce energy along with 
0.5 million tons of cane trash (Mohammadi et al., 
2020). Bagasse is currently disposed as waste in 
the country and only a small portion of it is used 
to produce medium density fiberboard (MDF). 
Cane trash remains on the field and decomposes 
to improve the soil quality. Gasification is regarded 
as one of the most promising technologies 
for converting biomass into energy due to its 
higher efficiency as compared to the combustion 
technology commonly used in the sugar cane 
industry (Anukam et al., 2016). Gasification process 
converts the carbonaceous  materials into  carbon 
monoxide (CO), hydrogen and carbon dioxide (HO2 
and CO2) which react at high temperatures (more 
than 700  °C) without combustion and provide a 
controlled amount of  oxygen  and/or  steam. The 
produced syngas is converted into energy in a 
combined cycle consisting of a gas turbine and a 
steam turbine. Fluidized bed (FLB) and fixed bed 
(FXB) gasifiers are typically used for small-scale 
gasification. FLB gasification technology is suitable 

for capacities of 100 kW to 1 MW, while FXB type 
is more suitable for capacities of 10 to 100 MW 
(Ciferno and Marano, 2002; NNFCC, 2009; Puig-
Arnavat et al., 2010). Gasification is assessed from 
different points of view by Niroo Research Institute 
(NRI) and various researchers as an appropriate 
technology to generate energy from bagasse 
(Amin Salehi et al., 2012; Asadullah, 2014; Safari 
et al., 2016; Sheikhdavoodi et al., 2015; Tavasoli 
et al., 2016). Mohammadi, et al., (2020), in a most 
recent study, carried out the life cycle assessment 
of energy production by bagasse in different 
Iranian sugar cane industries and investigated the 
environmental impacts. Some of the environmental 
impacts of electricity generation in combined heat 
and power (CHP) gas and bagasse gasification plants 
are presented in Table 1. As can be seen in Table 
1, the gas power plant has the highest acidification 
potential due to its higher emissions of sulphur 
and nitrogen oxides (SOx and NOx). In gas power 
plants, the engine adjustment is often a trade-off 
between NOx and other emissions. Adjustments of 
gas engines to lower NOx emissions normally lead 
to increased emissions of unburned hydrocarbons 
and CO (Kvist et al., 2011). A dry low NOx burner 
or selective catalytic reduction, which uses 
ammonia and a catalyst, can be used to reduce NOx 
emissions (NREL, 2017). Bagasse FXB gasification 
and CHP gas plants have the least and the highest 
eutrophication impacts due to their release of NOx 
and phosphate, respectively. Providing zeolite and 
sulphuric acid in FLB gasification process has a 
considerable influence on this impact category. The 
human toxicity potential of bagasse FLB gasification 
is the highest due to toxic effects of chemicals 
during the total chain, especially chromium, arsenic 
and NOx emissions. The photochemical oxidation 
potential generally depends on the amounts of 
released SOx and CO. In this category, CHP gas 

 
Table 1: Environmental impacts of production of 1 kWh electricity in different power plants (Mohammadi et al., 2020)

Environmental impacts Unit Values in 
CHP gas 

Values in 
bagasse FLB 
gasification 

Values in 
bagasse FXB 
gasification 

Acidification potential kg SO2 equal 4 ×10-4 2×10-4 6 ×10-5 
Eutrophication potential kg PO4 equal 7 ×10-5 6×10-5 1 ×10-5 
Human toxicity potential kg 1,4- DB equal 9 ×10-3 3×10-2 5 ×10-3 
Photochemical oxidation potential kg SO2 equal 1 ×10-5 9×10-6 2 ×10-6 
GWP kg CO2 equal 0.90 0.38 0.70 

Table 1: Environmental impacts of production of 1 kWh electricity in different power plants (Mohammadi et al., 2020)

https://en.wikipedia.org/wiki/Carbonaceous
https://en.wikipedia.org/wiki/Carbon_monoxide
https://en.wikipedia.org/wiki/Carbon_monoxide
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Carbon_dioxide
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Steam
https://en.wikipedia.org/wiki/Syngas
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plant has the highest impact. Moreover, gas power 
plant and bagasse FLB gasification have the highest 
and the lowest global warming potentials (GWPs), 
respectively, due to CO2 emissions released from 
co-generation unit (Mohammadi et al., 2020). 
Using bagasse energy in sugar cane factories 
could reduce GHG emissions in line with the Kyoto 
protocol limitation on Iran (Hosseini et al., 2013; 
Mohammadi et al., 2020).

Many studies have focused on economic 
feasibility of bagasse gasification plants (Ahmad et 
al., 2016; Broek et al., 2000; Caputo et al., 2005; 
Ciferno and Marano, 2002; Patel et al., 2016). 
However, neither of them has compared bagasse 
gasification plants with gas-fired power plants from 
environmental-economic perspective in the Iranian 
sugar cane industries. There are clear incentives to 
efficient use of energy alongside with developing 
alternative energy sources. Assigning parts of the 
country’s energy mix to renewable sources of 
energy has become a vital issue for Iranian policy 
makers and stakeholders due to the increase of 
the related environmental problems caused by 
wasteful consumption of fossil energy in the country 
(Mohammadi et al., 2020). Power generation in 
Iran heavily relies on NG, which covered 85% of the 
power sector in 2016. Moreover, the CHP NG power 
plants capacity will likely increase significantly in 
the near future in response to low NG prices, low 
carbon content, excellent dynamic response in 
operation, short construction period and lower 
cost of installation of CHP gas-fired power plants 
(Azadi et al., 2017; EIA, 2019; Falode and Ladeinde, 
2016). Considering the challenges of GHG reduction 
efforts in one hand and the environmental concerns 
caused by the current treatment of bagasse as 
waste on the other, it seems essential to investigate 
the possibility of using bagasse for energy 
production in the existing cane industry in Iran. The 

goal of this study is to compare the environmental-
economic viability of gas power plants with that of 
bagasse gasification power plants in the sugar cane 
industry in Iran. This study has been carried out 
in the department of environmental engineering, 
University of Tehran in 2019.

MATERIAL AND METHODS

In this study, electricity generation in three 
cases of gas CHP, bagasse FLB and FXB gasification 
power plants was evaluated and compared from 
the environmental-economic points of view. The 
discounted net present value (NPV) and internal 
rate of return (IRR) were calculated using Comfar 
software. NVP indicates the value the project adds 
to the investment by discounting the cash flow to 
the present time value as presented by Eq. 1. IRR 
reflects the actual profit rate of an investment 
project. The moderated IRR is a discount rate at 
which the project NPV becomes zero. A project 
is economically attractive if it has the highest IRR 
(higher interest rate on long-term loans in the bank 
deposit market) and a positive NPV. However, the 
government generally invests in the projects which 
generate electricity with lower levelised cost of 
electricity (LCOE) (IRENA, 2015) as estimated using 
Eq. 2. Moreover, the revenues earned from carbon 
reduction in the renewable cases were considered 
to clarify the path for both environmental and 
economic aspects. 
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Table 2: Assumptions used in the economic evaluation of power plants in the studied cases 
 

Parameters Values 
Electrical power capacity 10 MW 
Construction time 1 y 
Lifetime of the power plant 20 y 
Tax 25% on income 
Inflation and discount rate 20% 
Annual depreciation rate 5% 
Scrap value after useful life 10% 
Carbon emission reduction credit sailing rate USD 20 per ton of CO2 reduction 

 
  

Table 2: Assumptions used in the economic evaluation of power plants in the studied cases

https://www.miljoeogressourcer.dk/filer/lix/3708/Environmental_Project_no._1369__978-87-92779-08-3__Environmental_Economic_Assessment_Tools._Remediation_Technologies__2011_.pdf
https://www.miljoeogressourcer.dk/filer/lix/3708/Environmental_Project_no._1369__978-87-92779-08-3__Environmental_Economic_Assessment_Tools._Remediation_Technologies__2011_.pdf
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Where, CFt is net cash flow at the end of year t; 
It is investment expenditures in the year t (USD/y); 
CO&M t is operations and maintenance expenditures 
in the year t (USD/y); Cfuel t is fuel expenditures in 
the year t (USD/y); Epro t is electricity generation in 
the year t (kWh/y); r is discount rate (%); and n is 
lifetime of the project (y).

Assumptions
The heat and electricity produced in the co-

generation process were assumed to fulfill the 
energy demand within the sugar refinery and 
processes. The remaining heat was released to 
the atmosphere as waste heat, while the surplus 
electricity was sold to the grid. The cane factories 
in Iran, with an annual sugar production capacity of 
100,000 tons, have a potential to annually produce 
381,000 tons of bagasse and cane trash blend, which 
are suitable for fuel gasification plants. 0.35 and 
0.30 kWh surplus electricity can be fed into the grid 
per kg bagasse via FLB and FXB gasification systems, 
respectively (Gabra et al., 2001; Mohammadi et al., 
2020). By assuming 70% feedstock accessibility and 
7,500 operating hours (OH) annually, the estimated 
capacity of gasification plants in each cane factory 
would be about 10 MW. The assumptions considered 
in the economic analysis are presented in Table 2. 

The required data were collected from the 
previous studies mainly conducted by Broek et al., 
(2000); Caputo et al., (2005); Ciferno and Marano, 
(2002); Mohammadi et al., (2020); and Patel et al., 
(2016), and also from NRI technology suppliers 
and consultants. The expenses and revenues were 
estimated at the current study.

Costs
Estimation of cost components including 

capital expenditures (CAPEX) and operation and 
maintenance (O&M) costs (Blok et al., 2013; 
IRENA, 2013 and 2015) is presented in Table 3. In 
terms of CAPEX, according to the data retrieved 
from Iran’s Ministry of Energy, equipment costs 
were taken as 375, 2500 and 2000 USD per kW for 
CHP gas, FLB and FXB gasification power plants, 
respectively. The costs of design, land purchase, 
preparation, construction and civil works were 
taken as 10% of the equipment costs (Worley and 
Yale, 2012). O&M costs include costs of personnel, 
routine replacement, maintenance of equipment, 
insurance, raw materials, water and electricity, 
environmental actions, ash disposal and fuel 
costs. Based on the data obtained from NRI, NG 
consumption is approximately 0.25 m3/kWh or 
18.75 million m3/y at 10-MW gas power plants. The 
price of NG is 0.008625 USD/m3 according to Iran’s 
energy balance sheet of 2015. The cost of supplying 
bagasse is neglected due to the abundance of 
this resource in the Iranian cane factories. The 
electricity needed in the factory during the start-up 
phase is provided from the grid, while the rest is to 
be supplied from the CHP unit (ISFS, 2017). With a 
rough estimation, O&M costs other than fuel costs 
were obtained as 6% and 3% of the CAPEX in gas-
fired and gasification plants, respectively.

Revenues
Revenues comprising the proceeds from 

products sale, trading of carbon reduction credits 
(accounted as environmental criteria in renewable 

Table 3: Costs estimated for 10-MW power plants in the studied cases 
  

Cost elements Unit Values in case 1: 
CHP gas 

Values in case 2: 
Bagasse FLB 
gasification 

Values in case 3: 
Bagasse FXB 
gasification 

Equipment costs 1000 USD 3,750 25,000 20,000 
Costs of design, land and civil 1000 USD 375 2,500 2,000 
Total CAPEX 1000 USD 4,125 27,500 22,000 
Fuel costs 1000 USD/y 161.72 - - 

O&M costs other than fuel cost  
1000 USD/y 247.5 

(6% of CAPEX) 
825 

(3% of CAPEX) 
660 

 (3% of CAPEX) 
Total O&M costs 1000 USD/y 409.2 825 660 

Table 3: Costs estimated for 10-MW power plants in the studied cases
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cases) and scrap value were estimated in details 
for the three studied cases, as summarized in Table 
4. Equipment scrap value after useful life (Rscrap) 
was taken as 10% of the initial equipment price, 
according to estimates by NRI. The revenues from 
selling the excessive electricity to the grid after 
provision of the electricity demand within the sugar 
refinery and co-generation process were calculated 
using Eqs. 3 to 5. OH was considered 7500 hours 
(h) annually leading to electricity production (Epro) 
of 75 GWh/y in 10-MW power plants (Eq. 3). The 
electricity consumptions within sugar factory and 
co-generation process obtained from CHP unit 
(Econs) were estimated as 45.33%, 30% and 53.33% 
of Epro (Mohammadi et al., 2020) or 34, 22.5 and 40 
GWh/y in CHP gas, bagasse FLB and FXB gasification 
power plants, respectively. Therefore, these cases 
respectively have a potential to export 41, 52 and 35 
GWh of the surplus electricity to the grid annually 
(Eexp) (Eq. 4). According to the data obtained from 
Iran’s Ministry of Energy, the electricity selling price 
(Prel) was set at 1.375 cents/kWh at CHP gas plants. 
Renewable electricity purchase is guaranteed by 

Iran’s renewable energy and energy efficiency 
organization (SATBA) for up to 20 y with a feed-in 
tariff (FIT) of 4.625 cents/kWh defined for biomass 
gasification plants. An adjustment factor of 1.1 was 
applied on this price, estimated averagely over the 
past 20 y according to the Iranian central bank data. 
In the gasification cases, Prel was set at 5.088 cents/
kWh in the first 10 y of the operation and 3.561 
cents/kWh in the second 10 y (70% of the first 10 y 
price, due to SATBA’s 2018 statement).

Epro = Pel × OH    �  (3)

Eexp = Epro – Econs     � (4)

Rel = Eexp × Prel     � (5)

� Where, Epro is electricity production (kWh/y); 
Pel is power plant’s electrical capacity (kW); OH is 
operating hours (h/y); Eexp is excessive electricity 
exported to the grid (kWh/y); Econs is electricity 
consumption in sugar factory and process (kWh/y); 
Rel is revenue from selling electricity (USD/y); and 

Table 4: Revenues estimated for 10-MW power plants in the studied cases 
  

Revenue elements  
 Unit 

Values in 
case 1: 
CHP gas 

Values in case 2: 
Bagasse FLB 
gasification 

Values in case 3: 
Bagasse FXB 
gasification 

Power plant electricity production (Epro calculated from Eq. 
3) GWh/y 75 75 75 

Electricity consumption in sugar factory and process 
obtained from CHP unit (Econs) 

GWh/y 34 22.5 40 

Excessive electricity exported to the grid (Eexp calculated 
by Eq. 4) GWh/y 41 52.5 35 

Electricity selling price (Prel)     

- In the first 10 y of operation cents/kWh 1.375 5.088 5.088 

- In the second 10 y of operation cents/kWh 1.375 3.561 3.561 

Revenue from selling electricity (Rel calculated from Eq. 5)     

- In the first 10 y of operation 1000 USD/y 564 2,671 1,781 

- In the second 10 y of operation 1000 USD/y 564 1,870 1,246 

Carbon reduction tons CO2/y - 59,250 21,750 

CO2 reduction price USD/ton 
CO2 

20 20 20 

CDM revenue 1000 USD/y - 1,185 435 

Equipment scrap value (10% of equipment costs) 1000 USD 375 2,500 2,000 

Table 4: Revenues estimated for 10-MW power plants in the studied cases
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Prel is electricity selling price (USD/kWh).
Among the environmental impact categories, 

GWP was taken into account in the economic 
analysis. The use of bagasse and cane trash blend 
for energy production in FLB and FXB gasification 
cases will respectively lead to savings of 0.79 and 
0.29 kg CO2/kWh produced electricity (or 59,250 
and 21,750 tons of CO2 annually at 10-MW power 
plants), directly and indirectly by substituting 
the fossil-fuel-based electricity (Mohammadi et 
al., 2020). The carbon reduction credit rate was 
assumed as 20 USD/ton CO2 reduction using the 
clean development mechanism (CDM).

RESULTS AND DISCUSSION

The results of economic analysis of the cases are 
presented in Table 5. The positive NPV indicated 
the profitability of investments in all of the three 
cases. Bagasse FLB gasification and NG power plant 
cases showed the highest and the lowest economic 
profitabilities with the IRR values of 28.60% and 
21.94%, respectively. The return of capital (ROC) 
for CHP gas, bagasse FLB and FXB gasification 
power plants were calculated as 9.7, 6 and 7.5 y, 
respectively, showing the least payback period in 
the bagasse FLB gasification case. Analysis of the 
techno-economic feasibility of municipal waste 
gasification plants in Brazil showed that investment 
in the large gasification power plants can lead to an 
acceptable IRR (Luz, et al., 2015). In the economic 
analysis of a 200-MW gas power plant project for 
the first gas industrial park in Nigeria conducted by 
Falode and Ladeinde, (2016), a NPV of 10.8 million 
USD at a discount rate of 15% and an IRR of 16% with 
a ROC of 9 years was realized. The inconsistency of 
their results with the the results obtained in the 
current study can be due to different assumptions 
of discount and inflation rates. They also assumed 

NG and electricity prices or the specific capital cost 
per installed capacity three times higher than their 
amounts in the current study. Furthermore, due to 
SATBA’s 2018 statement, domestic designing and 
manufacturing of the power plant will increase 
the guaranteed purchase price of electricity up to 
30%, which was neglected in this study. The CAPEX 
of biomass gasification power plants in the United 
States is in the range of 1500 to 5700 USD per kW 
(IEA, 2007, 2015; IRENA, 2017). Various researches 
have obtained different ranges for the CAPEX of 
biomass gasification power plants. For example, it 
was estimated as 2000-5000 USD per kW by Balat 
and Osman, (2005), or 3600 USD/kW by Dantas et 
al. (2013). Application of additional equipment such 
as sound insulators to isolate the engine will lead to 
rise of prices. Lower cost equipment is accessible 
in Iran, as it varies considerably depending on the 
applied technology, pre-treatment methods, level 
of maturity, plant size, site conditions, regional price 
changes and local environmental requirements. The 
highest costs are assigned to small-scale systems, 
depending on equipment such as fueling system, 
engine walls and limited production. Therefore, the 
higher the capacity of the installation, the lower the 
specific costs (CAPEX per kW) and the higher the 
benefits (IRENA, 2013). In the economic evaluation 
of biomass gasification plants conducted by Caputo 
et al. (2005), the NPV trend was investigated over 
a capacity range of 5 to 50 MW. They found out 
that only negative NPV values were reached in the 
capacity range of 5 to 25 MW, while the positive 
values of NPV were associated with the power 
plants installed in higher capacities. When the 
gasification plant size increased from 5 to 50 MW, 
the investment costs decreased from 4900 to 2200 
€ per kW. Furthermore, some studies have shown 
that the small-scale biomass gasification plants 
present lower electric efficiency compared to large 

Table 5: Results of economic evaluation of investment plans for the studied cases 

Indicator Unit Values in case 1: 
CHP gas 

Values in case 2: 
Bagasse FLB gasification 

Values in case 3: 
Bagasse FXB gasification 

IRR % 21.94% 28.60% 25.09% 
NPV million USD 0.70 35.17 11.65 

ROC y 9.7 6 7.5 

LCOE USD/kWh 0.02 0.09 0.07 

Table 5: Results of economic evaluation of investment plans for the studied cases
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scale ones (Pantaleo, et al., 2015). However, a 
large number of case studies have confirmed the 
feasibility and financial viability of using the small-
scale units in the decentralized biomass gasification 
power plants (Luz et al., 2015; Pantaleo et al., 2015; 
Singh, 2015). The positive NPV obtained from 10-
MW bagasse gasification plants in the current study 
can be due to the availability of free bagasse in the 
country, while the feedstock costs could be critical 
for biomass power plants worldwide. The results 
reported in various studies are consistent with the 
results obtained in the present on the economic 
benefits of investment in bagasse-fuelled power 
plants (Balat and Osman, 2005; Broek et al., 2000; 
Caputo et al., 2005; Ciferno and Marano, 2002; 
Matsumura and Yokoyama, 2005). The syngas 
composition and gasification efficiency depend on 
gasifier type and conditions (Ardila et al., 2012; Dutta 
et al., 2012; Hijazi et al., 2016; Indrawan et al., 2017; 
Othman and Boosroh, 2016). In the United States 
and Europe, equipment (including gas turbine, 
heat recycling steam generator, water treatment 
system, and electrical equipment), engineering 
services and installation of a 10-MW gas-fired 
power plants averagely cost about 500-1500 USD 
per kW (Blok et al., 2013; IRENA, 2012; IRENA, 
2013; IRENA, 2017). In addition to considering the 
low cost of installation in the country, equipment 
prices of the lower part of the global range were 
assumed in the current study in order to conform 
with the earned revenues leading to beneficial 
economic results in the examined cases. Various 
researchers have estimated the share of O&M costs 
in gasification and gas-fired power plants in a wide 
range accounting for 2-10% of the CAPEX (Blok et 
al., 2013; Dantas et al., 2013; Falode and Ladeinde, 
2016; IRENA, 2013; IRENA, 2015; IRENA, 2017). 
Considering the effect of the power plant scale, 
especially on the required workforce, the larger 
the power plant, the lower the O&M cost per kW 
(Blok et al., 2013; IRENA, 2013). Typically, CHP gas 
plants need to be inspected every 4000 h to ensure 
whether the turbine has additional vibrations. The 
time duration between major repairs and complete 
refurbishment of all gas turbine components is 
approximately 25,000-50,000 h. The maintenance 
cost of a periodically operated turbine is three times 
of a continuously operated turbine, which operates 

for a period of 1,000 h or more. As displayed in 
Table 5, the estimated LCOE rate for the gas-fired 
power plant (0.02 USD/kWh) was far lower than 
the bagasse FLB and FXB gasification plants (0.09 
and 0.07 USD per kWh, respectively). The projected 
LCOE range for gas power plant is estimated in a 
wide range of 0.01 to 0.24 USD per kWh based on 
the literature worldwide (DEA, 2016; EIA, 2019; IEA, 
2015; NETL, 2015; Nian et al., 2016; NREL, 2017). In 
the present study, due to the low price of NG in Iran, 
application of low cost equipment and exchange 
rate fluctuations in the country, the obtained LCOE 
in the gas power plant was in the lower part of the 
global range. In gasification plants, the LCOE range 
is very wide due to the variety of raw material 
cost, efficiency and maturity. The LCOE in biomass 
gasification plants in the United States is typically 
0.1-0.2 USD per kWh (IEA, 2007, 2015). Numerous 
researchers have evaluated the  cost  of  electricity 
production in biomass gasification plants. For 
example, Meerman et al. (2013) and Patel et al. 
(2016) estimated the cost of electricity production 
in biomass gasification plants to be in the range of 
0.1-0.2 USD per kWh, while, Naqvi et al., (2016) 
calculated it to be varying between 0.29 and 0.45 
USD per kWh. According to IRENA reports, in a 
small or large scale CHP gasification system, the 
LCOE range is from 0.06 USD/kWh for FXB gasifiers 
to 0.24 USD/kWh for a small internal combustion 
engine as a primary engine (600 kW) which is 
suitable for off-grid or mini-grids applications due 
to its high investment cost (IRENA, 2012). In the 
studied bagasse gasification cases, the LCOE was in 
the lower part of the global range. LCOE was slightly 
higher in bagasse FLB gasification plants compared 
to bagasse FXB gasification plants due to their lower 
maturity. The discrepancies between the LCOE 
results obtained in the studied cases and the global 
ranges could be due to several factors such as 
availability of low price NG in the country, biomass 
feedstock prices, utilization of low cost equipment, 
scale of the studied power plants and the exchange 
rate fluctuations. Moreover, the costs and benefits 
of different technological routes can vary based on 
environmental and social perspectives (Dantas et 
al., 2013).

This study confirmed that the additional revenues 
from GHG emission savings by substituting the fossil-

https://www.sciencedirect.com/science/article/abs/pii/S175058361300087X?via%3Dihub#!
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based grid electricity will improve the economic 
viability of the project as previously reported in 
various studies (Mbohwa and Fukuda, 2003; Patel 
et al., 2016). However, some local environmental 
effects, which represent considerable costs, may 
not be considered in this study. Acidification, 
eutrophication, human toxicity, photochemical 
oxidation are among such environmental effects. 
Such costs could be evaluated based on the local 
studies and included in the LCOE calculation.

Sensitivity analysis
A sensitivity analysis was conducted to 

determine the parameters that had the largest 
effects on the economic results. As shown in Fig. 
1, the changes of equipment cost and exchange 
rate had the largest effects on NPV and IRR values 
respectively. The results showed that 10% decrease 
in either of the two parameters would lead to 1.6% 

increase in the IRR results. Subsequently, raising 
the electricity sales revenues (by raising FIT or the 
electricity production efficiency) and increasing 
the CDM trading rates had the largest effects on 
increasing the IRR values, respectively. Variation of 
O&M costs had no significant effect on IRR and NPV 
values. Moreover, some other factors such as tax-
exempt liability, more supporting banking facilities 
or the possibility of benefiting from immediate 
governmental plans to use free fuel in the early 
years of gas power plant operation will improve 
the economic profitability and attractiveness of the 
investment plans for the studied cases.

Different financial scenarios were investigated 
as displayed in Fig. 2. In the first financial scenario, 
the total capital cost was provided by the investor 
equity. In the financial scenarios 2 to 8, the investor 
equity share of the CAPEX was assumed as 15%. The 
rest (85%) was covered by a bank loan. A breathing 

Fig. 1: Diagram of IRR sensitivity to variation of various parameters in the investment plans for power plants
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period of 1.5 years, different interest rates (5, 10 
and 20%) and various repayment periods (4, 6 and 
10 years) were considered on the loan (Fig. 2). The 
highest IRR was allocated to the sixth financial 
scenario using the bank loan with the longest 
repayment period and the lowest interest rate on 
it. Subsequently, financial scenarios 2, 7, 5, 3, 1 and 
4 showed the best results, respectively. Financial 
scenario 8 (financed with the highest interest rate 
on the loan and the longest payback period) had 
the least profitability. According to the results, 
the interest rate had a considerable effect on the 
profitability of the project. Among the financial 
scenarios with the same loan interest rates, the 
cases with the longest payback period showed a 
better economic viability.

CONCLUSION

Annually, high amounts of bagasse are produced 
in Iran, most of which are currently treated as waste 
or burned. The country is facing the challenge of 
reducing GHG emissions and the necessity for 
replacing fossil fuels in cane factories. Moreover, 
Iranian sugar mills energy demand is mainly 
supplied by fossil fuels (NG or mazut). Each sugar 
cane factory in Iran, with an annual sugar production 
capacity of 100,000 tons, has a potential of fueling 
the 10-MW bagasse gasification power plants which 
will be able to export the surplus electricity to the 
grid, considerably save GHG emissions, and replace 
the grid electricity after satisfying the energy needs 
of the sugar refinery. A gas-fired power plant of the 
same scale consumes around 18.75 million m3 NG 
annually, which can be avoided using bagasse as 
renewable source of energy. Therefore, application 
of bagasse as a renewable source of energy is a 
feasible solution in terms of waste management 
in cane factories and contributes to the reduction 
of GHG emissions, fossil fuel replacement and 
consequently enhancing the energy security 
on a national level. This study reveals that the 
availability of free bagasse in Iran can lead to 
economical advantage of investment in bagasse 
gasification power plants compared to gas-fired 
power plants of the same scale. Although, due to 
the availability and low price of NG and petroleum 
products in Iran, the levelised electricity generation 
costs is significantly higher in biomass gasification 

plants compared to NG power plants. Therefore, 
it seems essential for the government to consider 
the environmental advantages along with the 
economic profitability of bagasse gasification plants 
and to support the private sector for improving the 
incentives to establish the biomass power plants to 
be able to compete with the fossil power plants.
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