Document Type: ORIGINAL RESEARCH PAPER

Authors

1 Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh

2 and Faculty of Earth Science, University, University Malaysia Kelantan, Jeli Campus, 17600 Jeli, Malaysia

3 Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh

4 Faculty of Earth Science, University, University Malaysia Kelantan, Jeli Campus, 17600 Jeli, Malaysia

5 Department of Animal Breeding and Genetics, Bangladesh Agricultural University, Mymensingh- 2202, Bangladesh

6 Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Sonapur -3814, Bangladesh

7 School of Engineering and Technology, University College of Technology Sarawak, Malaysia.

Abstract

Rapid industrialization along with advanced agricultural activities led to the contamination in aquatic environment with heavy metals. Heavy metals ultimately pass into human body through having aquatic animals like fish, prawn and crab. In this study, accumulation of heavy metals (zinc, copper, iron, cadmium and lead) in various organs of four commonly consumed fish (Euthynnus affinis, Pampus argenteus, Descapterus macrosoma, and Leiognathus daura), prawn (Fenneropenaeus indicus) and crab (Portunus pelagicus) of Tok Bali Port, Kelantan, Malaysia were determined. Health risk was assessed using estimated daily intake and target hazard quotients. Although the concentrations of all the heavy metals in all fish, prawn and crab species were lower as per Malaysian Food Act, but the concentrations showed remarkable differences among the species and organs. The concentration of heavy metals in the gill was the highest of all fish species followed by in the liver and flesh. The total accumulation of heavy metals was maximum in Euthynnus affinis followed by Leiognathus daura, Descapterus macrosoma and Pampus argenteus of the fish species. However, the highest concentrations (µg/g) was for Zn (72.97±2.75), followed by Fe (4.309±0.68), Cd (1.189±0.78), Cu (1±0.87) and Pb (0.41±0.19) among all the heavy metal contents of fish. No significant variation (P<0.05) of the heavy metal concentration in prawn and crab species was observed. The investigation indicated that the fish, prawn and crab species of this port were safe for human consumption but the safe disposal of various wastes should be practiced to control the heavy metal accumulation in future. 

Graphical Abstract

Highlights

  • The concentrations of the heavy metals in all fish, prawn, and crab species were found lower than Malaysian Food Act proposal;
  • The total and individual target hazard quotient values of six metals in adults (TTHQ= 0.0012) were higher than those of children (TTHQ= 0.00103);
  • Estimated daily intake and target hazard quotient values ensured that the studied marine species should not pose any threat to the consumers.

Keywords

Main Subjects

Agusa, T.; Kunito, T.; Sudaryanto, A.; Monirith , I.; Kan-Atireklap, S.; Iwata, H.; Ismail, A.; Sanguansin, J.; Muchtar, M.; Tana, T.S.; Tanabe, S., (2007). Exposure assessment for trace elements from consumption of marine fish in Southeast Asia. Environ. Pollut., 145(3): 766–777 (12 pages).

Agusa, T.; Kunito, T.; Yasunaga, G.; Iwata, H.; Subramanian, A.; Ismail, A.; Tanabe, S., (2005). Concentrations of trace elements in marine fish and its risk assessment in Malaysia. Mar. Pollut. Bull., 51(8): 896–911 (16 pages).

Ahmed, M.K.;  Baki, M.A.; Islam, M.S.; Kundu, G.K.; Habibullah-Al-Mamun, M.; Sarkar, S.K.;  Hossain, M.M., (2015). Human health risk assessment of heavy metals in tropical fish and shellfish collected from the river Buriganga, Bangladesh. Environ. Sci. Pollut. Res., 22(20): 15880–15890 (11 pages).

Ahmed, M.K.; Parvin, E.; Islam, M.M.; Akter, M.S.; Khan, M.S.;  Al-Mamun, M.H., (2014). Lead and cadmium induced histopathological changes in gill, kidney and liver tissues of freshwater climbing perch Anabas testudineus (Bloch, 1792). Chem. Ecol., 30: 532–540 (9 pages).

Ahmed, Q.; Bat, L., (2015). Heavy metal levels in Euthynnus affinis (Cantor 1849) Kawakawa fish marketed at Karachi Fish Harbour, Pakistan and potential risk to human health. J. Black Sea/Mediterr. Environ., 21(1):  35-44 (10 pages).

Al-Busaidi, M.; Yesudhason, P.; Al-Mµghairi, S.; Al-Rahbi, W.A.; Al-Harthy, K.S.; Al-Mazrooei, N.A.; Al-Habsi, S.H., (2011). Toxic metals in commercial marine fish in Oman with reference to national and international standards. Chemosphere, 85(1): 67–73 (7 pages).

Amisah, S.; Obirikorang, K.A.; Boateng, D.A., (2011). Bioaccumulation of heavy metals in the Volta Clam, Galatea paradoxa (Born, 1778) in relation to their geoaccumulation in benthic sediments of the Volta Estuary, Ghana, Water Qual. Expo. Health., 2(3-4): 147-156 (10 Pages).

Anandkumar, A.; Nagarajan, R,; Prabakaran, K.; Rajaram, R., (2017). Trace metal dynamics and risk assessment in the commercially important marine shrimp species collected from the Miri coast, Sarawak, East Malaysia. Reg. Stu. Mar. Sci., 16: 79-88 (10 pages).

Arulkumar, A.; Paramasivam, S.; Rajaramb, R., (2017). Toxic heavy metals in commercially important food fishes collected from Palk Bay, Southeastern India. Mar. Pollut. Bull., 119(1): 454-459 (6 pages).

Asegbeloyin, J.N.; Onyimonyi, A.E.; Ujam, O.T.; Ukwueze, N.N.; Ukoha, P.O., (2010). Assessment of toxic trace metals in selected fish species and parts of domestic animals. Pak. J. Nutr., 9(3): 213-215 (3 pages).

Bashir, F.H.; Othman, M.S.; Mazlan, A.G.; Rahim, S.M.; Simon, K.D., (2013). Heavy Metal Concentration in Fishes from the Coastal Waters of Kapar and Mersing, Malaysia. Turk. J. Fish. Aqu. Sci., 13(2): 375-382 (8 pages).

Bergstad, O.A., (2009), Fish: Demersal Fish (Life Histories, Behavior, Adaptations), Encycl. Ocean Sci. (Second Edition), pp 458–466 (9 pages).

Bhattacharyya, S.B.; Roychowdhury, G.; Zaman, S.; Raha, A.K.; Chakraborty, Bhattacharjee, A.S.; Mitra, A., (2013). Bioaccumulation of Heavy Metals in Indian White Shrimp (Fenneropenaeus Indicus): A Time Series Analysis. Int. J. Life Sc. Biotechnol. Pharm. Res., 2(2): 97-113 (17 pages).

Chien, L.C.; Hung, T.C.; Choang, K.Y.; Yeh, C.Y.; Meng, P.J.; Shieh, M.J.; Ha, B.C., (2002). Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci. Tot. Env., 285(1-3): 177–185 (9 pages). 

Colla, N.S.L.; Botté, S.E.; Marcovecchio, J.E., (2017). Tracing Cr, Pb, Fe and Mn occurrence in the Bahía Blanca estuary throµgh commercial fish species, Chemosphere. 175: 286-293 (8 pages).

Ebrahimpour, M.; Pourkhabbaz, A.; Baramaki, R.; Babaei, H.; Rezaei, M., (2011). Bioaccumulation of Heavy Metals in Freshwater Fish Species, Anzali, Iran. Bull. Environ. Cont. Toxicol., 87: 386–392 (7 pages).

El Nemr, A .; El-Said, G.F.;  Ragab, S .; Khaled, A .; El-Sikaily, A.,  (2016). The distribution, contamination and risk assessment of heavy metals in sediment and shellfish from the Red Sea coast, Egypt. Chemosphere, 165: 369-380 (12 pages).

El-Moselhy, K.M.; Othman, A.I.; Azem. H.A.E.; El-Metwally, M.E.A., (2014). Bioaccumulation of heavy metals in some tissues of fish in the Red Sea, Egypt. Egypt. J. B. App. Sci., 1(2): 97-105 (9 pages).

FAO, (1983). The state of food and agriculture.

Gale, N.L.; Adams, C.D.; Wixson, B.G.; Loftin, K.A.; Huang, Y.W., (2004). Lead, zinc, copper, and cadmium in fish and sediments from the Big River and Flat River Creek of Missouri's Old Lead Belt. Environ. Geochem. Health., 26(1): 37–49 (13 pages).

Gu, Y.G.;  Lin, Q.;  Huang, H.H.; Wang, L.; Ning, J.J.; Du, F.Y., (2017). Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of South China Sea. Mar. Pollut. Bull., 114(2): 1125-1129 (5 pages).

Gu, Y.G.; Lin, Q.; Wang, X.H.; Du. F.Y.; Yu, Z.L.; Huang, H.H., (2015). Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. Mar. Pollut. Bull., 96(1-2): 508-512 (5 pages).

Hajeb, P.; Jinap, S.; Ismail, A.; Fatimah, A.B.; Jamilah, B.; Rahim, M.A., (2009). Assessment of mercury level in commonly consumed marine fishes in Malaysia. Food Cont., 20(1): 79–84 (6 pages).

Harada, M.; Nakachi, S.; Chen, T.; Hamada, H.; Ono, Y.; Tsuda, T.; Yanagida, K.; Kizaki, T.; Ohno, H., (1999). Monitoring of mercury pollution in Tanzinaia: relation between head hair mercury and health.  Sci. Total Environ., 227(2-3): 249–256 (8 pages).

Hosseini, A.A.; Karbassi, A.; Hassanzadeh, B.K.; Monavari, S.M.; Sekhavatjou, M.S., (2012). Bioaccumulation of trace elements in different tissues of three commonly available fish species regarding their gender, gonadosomatic index, and condition factor in a wetland ecosystem. Environ. Monit. Assess., 184(4): 1865-1878 (14 pages).

Htun-Han, M., (1978). The reproductive biology of the dab Limanda limanada (L.) in the North Sea: gonadosomatic index, hepatosomatic index and condition factor. J. Fish Biol., 13(3): 351–377 (27 pages).

Islam, M.S.; Ahmed, M. K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Masunaga, S., (2014). Metal Speciation in Sediment and Their Bioaccumulation in Fish Species of Three Urban Rivers in Bangladesh. Arch. Environ. Contam. Toxicol., 68(1): 92–106 (15 pages).

JECFA, (2003). Joint FAO/WHO Expert Committee on Food Additives. Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives, Summary and Conclusions of the 61st Meeting of the Joint FAO/WHO Expert Committee on Food Additives.

JECFA, (2009). Evaluations of the Joint FAO/WHO Expert Committee on Food Additives. Joint FAO/WHO Expert Committee on Food Additives.

Jos´e, L.; Domingo, A.; Falc´o, B.G.; Llobet J. M., (2007). Benefits and risks of fish consumption Part I. A quantitative analysis of the intake of omega-3 fatty acids and chemical contaminants. Toxicol. 230(2-3): 219–226 (8 pages).

Kibria, K.; Hossain, M.M.; Mallick, D.; Lau, T.C.; Wu, R., (2016). Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution. Chemosphere., 165: 1-9 (9 pages).

Kotze, P.J., (1997). Aspects of water quality, metal contamination of sediment and fish in the Oilfants River. Disserattion, Rand Afr. University South Africa.

Lee, C.C.; Hsu, Y.C.; Kao, Y.T.; Chen, H.L., (2016). Health risk assessment of the intake of butyltin and phenyltin compounds from fish and seafood in Taiwanese population. Chemosphere, 164: 568-575 (8 pages).

Lee. K.; Kweon, H.Y.; Yeo, J.; Woo, S.O.; Han, S.M.; Kim, J.H., (2011). Characterization of tyrosine-rich Antheraea pernyi silk fibroin hydrolysate. Int. J. Biol. Macromol., 48(1): 223–226 (4 pages).

Li, J.; Sun, C.; Zheng, L.; Jiang, F.; Wang, S.; Zhuang, Z.; Wang, X., (2017). Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly islands. Mar. Pollut. Bull., 122(1-2): 464-469 (6 pages).

Licata, P.; Trombetta, D.; Cristani, M.; Naccari, C.; Martino, D.; Calò, M.; Naccari, F., (2005). Heavy metals in liver and muscle of bluefin tuna (Thunnus thynnus) caught in the straits of Messina (Sicily, Italy). Environ. Monit. Assess., 107(1-3): 239–248 (10 pages).

Linnik, P.M.; Zubenko, I.B., (2000). Role of bottom sediments in the secondary pollution of aquatic environments by heavy metal compounds: Lakes and Reservoirs. Res. Manage., 5(1): 11–21 (11 pages).

Losasso, C.; Bille, L.; Patuzzi, I.;  Lorenzetto, M.;  Binato, G.;  Pozza, M.D.; Ferrè, N.; Ricci, A., (2015). Possible Influence of Natural Events on Heavy Metals Exposure from Shellfish Consumption: A Case Study in the North-East of Italy. Front Public Health., 3: 1-7 (7 pages).

Martín, J.R.; De Arana, C.; Ramos-Miras, J.J.; Gil, C.; Boluda, R., (2015). Impact of 70 years urban growth associated with heavy metal pollution. Environ. Pollut., 196: 156-163 (8 pages).

Matos, L.A.; Cunha, A.C.S.; Sousa, A.A. Maranhão, J.P.R.; Santos, N.R.S.; Gonçalves, M.M.C.; Dantas, S.M.M.M..; Sousa, J.M.C.E..; Peron, A.P.; Silva, F.C.C.D.; Alencar, M.V.O.B.; Islam, M.T.; Aguiar, R.P.S.; Melo-Cavalcante, A.A.C.; Bonecker, C.C.; Junior, H.F.J., (2017). The influence of heavy metals on toxicogenetic damage in a Brazilian tropical river. Chemosphere, 185: 852-859 (8 pages).

Merciai, R.; Guasch, H.; Kumar, A.; Sabater, S.; García-Berthou, E., (2014). Trace metal concentration and fish size: Variation among fish species in a Mediterranean river. Ecotox. Environ. Saf., 107: 154-161 (8 pages).

Merian, E., (1991). Metals and their compounds in the environment, Occurrence Analysis and Biological Relevance. Weinheim, Germany.

Mohammadnabizadeh, S.; Pourkhabbaz, A.; Afshari, R., (2014). Analysis and Determination of Trace Metals (Nickel, Cadmium, Chromium, and Lead) in Tissues of Pampus argenteus and Platycephalus indicus in the Hara Reserve, Iran.  J. Toxicol., Article ID 576496, (6 pages).

Monday, U.E.; Nsikak, U.B., (2007). Cadmium, Copper, Lead and Zinc tissue levels in Bonga shad (Ethmalosa Fimbriata) and Tilapia (Tilapia guineensis) caught from Imo River, Nigeria. Am. J. Food Technol., 2: 45-48 (4 pages).

Murtala, B.A.; Abdul, W.O.; Akinyemi, A.A., (2012). Bioaccumulation of Heavy Metals in Fish (Hydrocynus Forskahlii, Hyperopisus Bebe Occidentalis and Clarias Gariepinus) Organs in Downstream Ogun Coastal Water, Nigeria. Trans. J. Agri. Sci.,  4: 51-59 (9 pages).

MFA, (1983). Food Act. Laws of Malaysia. Act 281.

Nasri, N.N.S.; Aris. A.Z.; Mohammad, K.N.; Looi. L.J.; Kim, K.W., (2017). Bioaccumulation of Heavy Metals in Maricultured Fish, Lates calcarifer (Barramudi), Lutjanus campechanus (Red Snapper) and Lutjanus griseus (Grey Snapper). Chemosphere, 197: 318-324 (7 pages).

Newman, M.C.; Doubet, D.K., (1989). Size-dependence of mercury (II) accumulation kinetics in the mosquitofish, Gambusia affinis (Baird and Girard). Arch. Environ. Contam. Toxicol., 18, 819–825 (7 pages).

Newman, M.C.; Mitz, S.V., (1988). Size dependence of zinc elimination and uptake from water by mosquitofish Gambusia affinis (Baird and Girard). Aquat. Toxicol., 12: 17–32 (16 pages).

Onsanit, S.; Ke, C.; Wang, X.; Wang, K.; Wang, W., (2010). Trace elements in two marine fish cultured in fish cages in Fujian province China.  Environ. Pollut., 158: 1334–1342 (9 pages).

Özden, Ö.; Erkan, N.; Kaplan, M. et al. ,  (2018). Toxic Metals and Omega3 Fatty Acids of Bluefn Tuna from Aquaculture: Health Risk and Benefits.  Expo. Health., 1-10 (10 pages).

Part, P.; Svanberg, O.; Kiessling, A., (1985). The availability of cadmium to perfused rainbow trout gills in different water qualities. Water Res., 19: 427-434 (8 pages).

Perugini, M.; Visciano, P.; Manera, M. et al. , (2014). Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monit. Assess., 186: 2205-2213 (9 pages).

Qiao-qiao, C.; Guang-wei, Z.; Langdon, A., (2007). Bioaccumulation of heavy metals in fishes from Taihu Lake, China. J. Environ. Sci., 19(12): 1500–1504 (5 pages).

Salamat, N.; Movahedinia, A.; Etemadi-Deylami, E.; Mohammadi, Y., (2015). Pike (Esox lucius) Bio-indicator of heavy metal pollution in Anzali Wetland. Water Qual. Exposure Health., 7(2): 251-254 (4 Pages).

Salleh, N.H.M.; Halim, M.A.A., (2018). Enhancing environmental sustainability over fisheries industry through proactive risk evaluation: a case of Tok Bali fishing port. J. Sustainability Sci. Manage., 4: 51-63 (13 pages). Sany, S.B.T.; Salleh, A.; Sulaiman, A.H.; Sasekumar, A.; Rezayi, M.; Tehrani, G.M., (2012). Heavy metal contamination in water and sediment of the Port Klang coastal area, Selangor, Malaysia, Environ. Earth Sci., 69(6): 2013-2025 (13 pages).

Sarkara, T.; Alama, M.M.; Parvina, N.; Fardous, Z.; Chowdhury, A.Z.; Hossain, S.; Haque, M.E.; Biswas, N., (2016). Assessment of heavy metals contamination and human health risk in shrimp collected from different farms and rivers at Khulna-Satkhira region, Bangladesh. Toxicol., Rep. 3: 346–350 (5 pages).

Satarug, S.; Vesey, D.A.; Gobe, G.C., (2017). Current health risk assessment practice for dietary cadmium: Data from different countries. Food Chem. Toxicol., 106 (Part A): 430-445 (16 pages).

Schintu, M.; Marrucci, A.; Marras, B.; Galgani, F.; Buosi, C.; Ibba, A.; Cherchi, A.,  (2016). Heavy metal accumulation in surface sediments at the port of Cagliari (Sardinia, western Mediterranean): Environmental assessment using sequential extractions and benthic foraminifera, Mar. Pollut. Bull., 111(1-2): 45-56 (12 pages).

Sharif, A.K.M.; Mustafa, A.I.; Amin, M.N.; Safiullah, S., (1993). Trace element concentrations in tropical marine fish from the Bay of Bengal. Sci. Total Environ., 138(1-3): 223-234 (12 pages).

Taweel, A.; Othman, M.S.; Ahmad. A.K., (2013). Assessment of heavy metals in tilapia fish (Oreochromis niloticus) from Lagat River and Engineering Lake in Bangi, Malaysia, and evaluation of the health risk from tilapia consumption. Ecotoxicol. Environ. Saf., 93: 45-51 (7 pages).

USEPA, (2011). Regional screening level summary table.

Velusamy, A.; Kumar, P.S.; Ram, A.; Chinnadurai, S., (2014). Bioaccumulation of heavy metals in commercially important marine fishes from Mumbai Harbor, India. Mar. Pollut. Bull., 81(1): 218–224 (7 pages).

Wang, Y.; Qiao, M.; Liu, Y.; Zhu, Y., (2012). Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ., Sci. 24(4): 690–698 (9 pages).

Wani, A.L.; Ara, A.; Usmani, J.A., (2015). Lead toxicity: a review. Interdiscip Toxicol., 8(2): 55–64 (10 Pages).

Wei, Y.H.; Zhang, J.Y.; Zhang, D.W.; Tu, T.H.; Luo, L.G., (2014). Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol. Environ. Saf., 104: 182–188 (7 pages).

Yi, Y.; Tang, C.; Yi, T.; Yang, Z.; Zhang, S., (2017). Health risk assessment of heavy metals in fish and accumulation patterns in food web in the upper Yangtze River, China. Ecotoxicol. Environ., Saf. 145:295–302 (8 pages).

Zhang, C.; Qiao, Q.; Piper, J.D.; Huang, B., (2011). Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods. Environ. Pollut., 159(10): 3057-3070 (14 pages).

Zhang H, Cui B, Xiao R, Zhao H (2010). Heavy metals in water, soils and plants in riparian wetlands in the Pearl River Estuary, South China. Procedia. Environ. Sci., 2: 1344–1354 (11 pages).

Zhang, H.D.; Huang, B.; Dong, L.; Hu, W.; Akhtar, M.S.; Qu, M., (2017). Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicol. Environ. Saf., 137: 233–239 (7 pages).

Zhao, S.; Feng, C.; Quan, W.; Chen, X.; Niu, J.; Shen, Z., (2012). Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary, China. Mar. Pollut. Bull., 64(6): 1163–1171 (9 pages).

 

HOW TO CITE THIS ARTICLE:

Salam, M.A.; Paul, S.C.; Noor, S.N.B.M.;  Siddiqua, S.A.; Aka, T.D.; Wahab, R.; Aweng, E.R., (2019). Contamination profile of heavy metals in marine fish and shellfish. Global J. Environ. Sci. Manage., 5(2): 225-236.


Letters to Editor


GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image