Document Type: ORIGINAL RESEARCH PAPER

Authors

1 School of Sciences, P.P. Savani University, Surat-394125 India

2 Bhagwan Mahavir College of Science and Technology, VNSGU, Surat-395007 India

3 Aspee Shakilam Biotechnology Institute, Navsari Agricultural university, Athwa Farm, Surat-39500 India

Abstract

Laccases have vast prospective for biotechnological applications due to their outstanding bioremediation potential. These include abundant applications in effluent detoxification, enzymatic conversion of chemical intermediates, wine clarification degradation of textile dyes etc. In the present study, two potential microbes were isolated on solid medium containing guaiacol and ABTS for laccase activity out of 10 microbes. Two cultures PHP7 and PKD5 were selected for molecular characterization was carried out using 16S rRNA gene technology of PHP7 revealed as Bacillus cereus (KU878970.1).Partial amplification of laccase gene contain conserved domain of multicopper oxidase family. The biomass produced by PHP7 was 0.053 mg/5 mL, while PKD5 was 0.058 mg/5 mL. While dye degradation of PHP7dye of 64.28% after incubation of 6 days at pH7 whereas  PKD5 shows highest degradation of dye i.e. 61.90% after incubation of 8 days at pH8. PHP7 showed highest Laccase activity of 0.489 U/L at pH 7 while PKD5 showed 0.404 U/L Laccase activity at pH 8 at 8th day of incubation. Using laccase from PHP7 and PKD5 isolates, explored at industrial level for decolorization of coloured effluents that significance in  environmentally friendly and play critical role as bioremediation at commercial scale.

Graphical Abstract

Highlights

  • Two novel microbes (PHP7 and PKD5) isolated from different sample of industrial contaminated sites
  • After biochemical and molecular characterization, PHP7 and PKD5 isolate were nomenclature as Bacillus cereus  and sequence was also submitted to NCBI (KP729612.1)
  • Molecular characterization of laccase gene from PHP7 isolate  revealed as PHPBMCST laccase-like (cotA) gene submitted to NCBI(KX215765.1)
  • Bioinformatics approaches revealed presence of conserved domain of cupredoxin super families of laccase protein
  • In partial amplified laccase gene, PHP7 and PKD5 isolates were also optimized for different pH and temperature for dye decolourization.

Keywords

Main Subjects

Abdulkarim, S.M.; Fatimah, A.B.; Anderson, J.G., (2005). Effect of salt concentrations on the growth of heat stressed and unstressed Escherichia coli. J. Food Agric. Environ., 7(3): 51-54 (4 pages).

Ahmed, I.; Yokota,A.; Fujiwara,T., (2007). A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles, 11(2): 217-224 (8 pages).

Anna, J.W.; Janina, K.R.; Elzbieta, M.; Władysław, W., (2002). Fungi and their ability to decolourize azo and anthraquinonic dyes Enzyme. Microbiol. Technol., 30: 566-572 (7 pages).

Aravind, J.; Kanmani, P.; Sudha, G.; Balan, R., (2016). Optimization of chromium(VI) biosorption using gooseberry seeds by response surface methodology. Global J. Environ. Sci. Manage., 2(1): 61-68 (8 pages).

Bandounas, L.; Wierckx, N.J. P.; de Winde, J. H.; Ruijssenaars, H.J., (2011). Isolation and characterization of novel bacterial strains exhibiting ligninolytic potential. BMC Biotechnol., 11: 94-105 (11 pages).

Bhuvaneshwari, V.; Preethikaharshini, J.; Amsaveni, R.; Kalaiselvi,  M., (2015). Isolation, optimization and production of laccase from Halobacillushalophilus. International J. Biosci. Nanosci., 2(2): 41-47 (7 pages).

Bourbonnais, R., Paice; M.G.; Reid, I.D.; Lanthier, P.; Yaguchi, M., (1995). Lignin oxidation by laccaseisozymes from Trametesversicolor and role of the mediator 2,2'-Azinobis (3-Ethylbenzthiazoline-6- Sulfonate) in kraft lignin depolymerization”. Appl. Environ. Microbiol., 61(5): 1876-1880 (5 pages).

Brenna, O.; Bianchi, E., (1994). Immobilized laccase for phenolic removal in must and wine.Biotechnol.Lett., 24:35–40 (6 pages).

Buddolla, V.; Subhosh, C.M.; Pallavi,  H.; Reddy, R.B.,(2008). Screening and assessment of laccase producing fungi isolated from different environmental samples. Afr. J. Biotech., 7(8): 1129-1133 (5 pages).

Chun, L.W.; Min, Z.; De-bin, L.; Dai-zong ,C.; Lei, L.; Xing-dong ,W.,(2010). Isolation and characterization of a novel Bacillus subtilis WD23 exhibiting laccase activity from forest soil. Afr. J. Biotech., 9(34): 5496-5502 (7 pages).

Coll, P.M.; Fernández-Abalos, J.M.; Villanueva, J.R.; Santamaría, R.; Pérez, P., (1993). Purification and characterization phenoloxidase (Laccase) from the lignin degrading basidiomycete PM1 (CECT2971). Appl. Environ. Microbiol., 59: 2607-2613 (7 pages).

Claus, H., (2004)  Laccases: structure, reactions, distribution. Micron, 35: 1-2:93–96 (7 pages).

Cristina,  G.; marques, D.S.; Giovana, K.T.; Daniela, F.D. S.; Rosane, M.P.,(2004). Production of laccase isoforms by Pleurotuspulmonarius in response to presence of phenolic and aromatic compounds. J. Basic Microbiol., 44: 129- 136 (8 pages).

De Jong, E.; de Vries, F.P.; Field, J.A.; van der Zwan, R.P.; de Bont, J.A.M., (1992). Isolation and screening of basidiomycetes with high peroxidative activity. Mycol. Res. 12: 1098–1104 (6 pages).

Diamantidis, G.; Effosse, A.; Potier, P.; Bally, R., (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillumlipoferum, Soil Biol. Biochem., 32(7): 919–927 (9 pages).

Endo, K.; Hayashi, Y.;  Hibi, T.; Hosono, K.;Beppu, T.; Ueda, K., (2003). Enzymological characterization of EpoA, a laccase-like phenol oxidase produced by Streptomyces griseus,  J. Biochem, 133(5): 671–677 (7 pages).

Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G.,(2010). Laccases: A never-ending story. Cell Mol. Life Sci., 67(3): 369–385 (7 pages).

Gnanasalomi, D., V.; Gnanadoss, J. J., (2013). Molecular characterization and phylogenetic analysis of laccase producing fungal isolates with dye decolourizing potential. Res. Biotechnol., 4(5): 01-08 (8 pages).

Grant, W.D.; Jones, B.E.; Mwatha, W.E., (1990). Alkaliphiles: ecology, diversity and applications. FEMS Microbiol. Rev., 75: 255-270 (16 pages).

Hollo, M.F.; Moszer, I.; Danchin, A.; Martin-Verstraete, I., (2001). CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol., 183(18): 5426-5430 (5 pages).

Jiejie, H.; Fuqiang, S.; Feng, H.; Changlin, Y.; Zhijun, Z.; Yi, Z.; Xingjun, T., (2007). Production of laccase by a newly isolated deuteromycete fungus Pestalotiopsis sp. and its decolorization of azo dye. J. Ind. Microbiol. Biotechnol., 34: 233-240 (8 pages).

Lane, D.J., (1991). 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, 115-175 (61 pages).

Lee, I.Y.; Jung, K.H.; Lee, C.H.; Park, Y.H., (1999). Enhanced production of laccase in Trametesversicolor by addition of ethanol. Biotechnol. Lett., 21: 965-968 (4 pages).

Lu, C.; Wang, H.; Luo, Y.;Guo, L., (2010). An efficient system for pre-delignification of gramineous biofuel feedstock In vitro: Application of a laccase from Pycnoporussanguineus H275. Process Biochem., 45: 1141–1147 (7 pages).

Lu, L.; Zhao, M.; Liang, S. C.; Zhao, L.Y.; Li, D.B.; Zhang, B. B., (2009). Production and synthetic dyes decolourization capacity of a recombinant laccase from Pichia pastoris. J. Applied Microbiol., 107: 1149–1156 (8 pages).

Kiiskinen, L.L.; Ratto, M.; Kruus,  K., (2004). Screening for novel laccase-producing microbes.J. Appl. Microbiol., 97: 640- 646 (7 pages).

Kim, C.; Lorenz, W.W.; Hoopes, J.T.; Dean, J.F.D.,(2001) Oxidation of phenolatesiderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene, J. Bacteriol., 183(16): 4866–4875 (10 pages).

Monteiro, M.C.; De carvalho, M.E.A., (1998). Pulp bleaching using laccase from Trametesversicolor under high temperature and alkaline conditions. Appl. Biochem. Biotechnol., 72: 983-993 (11 pages).

Muthukumarasamy, N.P.;  Jackson, B.;  Joseph Raj, A.; Sevanan, M., (2015). Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate,  Biochem. Res. Int., 1-9 (9 pages).

Nicolotti, G.; Gonthier, P.; Guglielmo, F.; Garbelotto, M. M., (2009). A Bbomolecular method for the detection of wood decay fungi: A focus on tree stability assessment. J. Arboric., 35(1): 14–19 (6 pages).

Niladevi, K.N.; Sukumaran, R.K.; Jacob, N.; Anisha, G.S.; Prema, P., (2009). Optimization of laccase production from a novel strain Streptomyces psammoticus using response surface methodology. Microbiol. Res., 164: 105-113 (9 pages).

Nishida, T.K.; Kashino, Y.; Mimura, A.; Takahara Y., (1998). Lignin biodegradation by wood rotting fungi I. Screening of lignin degradating fungi. Mokuzai Gakkaishi, 34: 530- 536 (7 pages).

Palmieri, G.; Giardina, P.; Bianco, C.; Fontanella, B.; Sannia, G., (2000). Copper induction of laccaseisoenzymes in the ligninolytic fungus Pleurotusostreatus. Appl. Environ. Microbiol., 66(3): 920–924 (5 pages).

Patel, H.; Jadav, C.; Kalaria,  R.K., (2017). Biochemical and molecular profiling of novel halophiles isolated from coastal region of South Gujarat. Trend Biosci., 10(1): 368-378 (11 pages).

Revankar, M.S.; Lele,  S.S., (2006). Enhanced production of laccase using a new isolate of white rot fungus WR-1. Proc. Biochem. 41: 581-588 (8 pages).

Robinson, T.; Chandran, B.; Nigam, P., (2001). Studies on the production of enzymes by white-rot fungi for the decolorization of textile dyes. Enzyme Microbiol. Technol. 29: 575-579 (5 pages).

Roy, J.J.; Abraham, T.E.; Abhijit, K.S.;Sujitkumar, P.V.; Thakur, M.S., (2005). Biosensor for the determination of phenol based cross linked enzyme crystals (CLEC) of laccase. Biosen. Bioelectron., 21: 206–211 (6 pages).

Safary, A.; Moniri, R.;  Hamzeh-Mivehroud, M.; Dastmalchi, S., (2016). Identification and molecular characterization of genes coding pharmaceutically important enzymes from halo-thermo tolerant bacillus  Adv. Pharm. Bull.,  6(4): 551–561 (11 pages).

Sivakumar, R.; Rajendran, R.; Balakumar, C.; Tamilvendan, M.,(2010). Isolation, screening and optimization of production medium for thermostable laccase production from GanodermaspInt. J. Eng. Sci.Technol., 2(12): 7133-7141 (9 pages).

Sambrook, J.; Fritsch, E. F.; Maniatis, T., (2009). Molecular cloning: a laboratory manual by Joe Sambrook, 3rd ed. Cold Spring Harbor Laboratory Press, New York (2567 pages).

Shraddha, R.S.; Sehgal, S.; Kamthania, M.; Kumar, A., (2011). Laccase: microbial sources, production, purification, and potential biotechnological applications . Enzyme Res., 1-11 (11 pages).

Shrestha, P.; Joshi, B.; Joshi, J.; Malla, R; Sreerama, L., (2016). Isolation and Physicochemical Characterization of Laccase from Ganoderma lucidum-CDBT1 Isolated from Its Native Habitat in Nepal. Biol. Med. Res. Int., 1-10 (10 pages).

Solano, F.; Garcıa, E.; Perez, D.; Sanchez-Amat, A., (1997). Isolation and characterization of strain MMB-1 (CECT 4803), a novel melanogenic marine bacterium, Appl. Environ.Microbiol., 63(9): 3499–3506 (8 pages).

Teck, N.A.; Gek, C.N.; Adeline Seak, M.C., (2010). A quantitative method for fungal ligninolytic enzyme screening studies. Asia-Pac. J. Chem. Chem. Eng., 6: 589-595 (7 pages).

Vantamuri, A.B.; Kaliwal, B.B., (2015). Isolation, screening and Identification of Laccase producing Fungi. Int. J. Pharm. Biol. Sci., 6(3): 242–250 (9 pages).

Xu F., (1999). Recent progress in laccase study: properties, enzymology, production, and applications. In: The encyclopedia of bioprocessing technology fermentation, biocatalysis and bioseparation ed. Flickinger, M.C. and Drew S.W., New York: John Wiley and Sons; 1545–1554 (10 pages).

 

HOW TO CITE THIS PAPER

Patel, H.K.; Sharma, P.J.; Kalaria, R.K., (2019). Bioprospecting and molecular characterization of laccase producing bacteriafrom industrial contaminated sites. Global J. Environ. Sci. Manage., 5(2): 203-212.


Letters to Editor


GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image