Document Type : ORIGINAL RESEARCH PAPER

Authors

1 Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

2 Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting diode lamp. Response surface methodology was successfully employed to optimize the treatment of acid orange 10 dye and assess the interactive terms of four factors. The characteristics of catalysts were determined by field emission scanning electron microscopes, X-ray diffraction and Fourier transform infrared spectroscopy. The optimum values of initial dye concentration, initial pH, irradiation time and catalyst dose were found 11.889 mg/L, 4.592, 12.87 min, and 0.178 g/100 mL for ultraviolet/titanium dioxide process, respectively, and 10.919 mg/L, 3.231, 320.26 min and 0.239 g/100 mL for visible/bismuth vanadate process, respectively. The removal efficiencies obtained for acid orange 10 were 100% and 36.93% after selecting the optimized operational parameters achieved for titanium dioxide and bismuth vanadate, respectively. The highest efficiency was achieved by the use of ultraviolet/titanium dioxide system, while a low acid orange 10 removal efficiency was obtained for the synthesized bismuth vanadate using the co-precipitation method. Thus, it seems necessary to increase the photocatalytic activity of bismuth vanadate in combination with titanium dioxide to remove acid orange 10 dye in subsequent studies.

Graphical Abstract

Photodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution

Highlights

  • Acid orange10 degradation was modeled using UV/TiO2 and UV–vis/BiVO4 processes
  • The total dye was removed from the aqueous solution by UV/TiO2 system
  • The synthesis of BiVO4 by co-precipitation method showed a small amount of dye removal
  • The degradation of AO10 is not very sensitive to the initial pH for both nanoparticles, especially TiO2.

Keywords

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image