1 Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran

2 Environment Research Center, Research Institute for Primordial Prevention of Non-communicable disease, Isfahan University of Medical Sciences, Isfahan, Iran


In this study, the photocatalytic degradation of azo-dye acid orange 10 was investigated using titanium dioxide catalyst suspension, irradiation with ultraviolet-C lamp and bismuth vanadate under visible light of light-emitting diode lamp. Response surface methodology was successfully employed to optimize the treatment of acid orange 10 dye and assess the interactive terms of four factors. The characteristics of catalysts were determined by field emission scanning electron microscopes, X-ray diffraction and Fourier transform infrared spectroscopy. The optimum values of initial dye concentration, initial pH, irradiation time and catalyst dose were found 11.889 mg/L, 4.592, 12.87 min, and 0.178 g/100 mL for ultraviolet/titanium dioxide process, respectively, and 10.919 mg/L, 3.231, 320.26 min and 0.239 g/100 mL for visible/bismuth vanadate process, respectively. The removal efficiencies obtained for acid orange 10 were 100% and 36.93% after selecting the optimized operational parameters achieved for titanium dioxide and bismuth vanadate, respectively. The highest efficiency was achieved by the use of ultraviolet/titanium dioxide system, while a low acid orange 10 removal efficiency was obtained for the synthesized bismuth vanadate using the co-precipitation method. Thus, it seems necessary to increase the photocatalytic activity of bismuth vanadate in combination with titanium dioxide to remove acid orange 10 dye in subsequent studies.

Graphical Abstract


  • Acid orange10 degradation was modeled using UV/TiO2 and UV–vis/BiVO4 processes
  • The total dye was removed from the aqueous solution by UV/TiO2 system
  • The synthesis of BiVO4 by co-precipitation method showed a small amount of dye removal
  • The degradation of AO10 is not very sensitive to the initial pH for both nanoparticles, especially TiO2.


Main Subjects

Abou-Gamra, Z.M.; Ahmed, M.A., (2015). TiO2 nanoparticles for removal of malachite green dye from waste water. Adv. Chem. Eng. Sci., 5(3): 373-388 (16 pages).

Aleboyeh, A.; Daneshvar, N.; Kasiri, M., (2008). Optimization of CI Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chem. Eng. Process.: Process Intensif., 47(5): 827-832 (6 pages).

Aravind, J., Kanmani, P., Sudha, G., Balan, R., (2016). Optimization of chromium(VI) biosorption using gooseberry seeds by response surface methodology. Global J. Environ. Sci. Manage., 2(1): 61-68 (8 pages).

Armaǧan, B.; Özdemir, O.; Turan, M.; Celik, M., (2003). The removal of reactive azo dyes by natural and modified zeolites. Chem. Technol. Biotechnol.,78(7): 725-732 (8 pages).

Asiltürk, M.; Sayılkan, F.; Erdemoğlu, S.; Akarsu, M.; Sayılkan, H.; Erdemoğlu, M.; Arpaç, E., (2006). Characterization of the hydrothermally synthesized nano-TiO2 crystallite and the photocatalytic degradation of Rhodamine B. J. Hazard. Mater., 129(1): 164-170 (7 pages).

Bonyadinejad, G.; Sarafraz, M.; Khosravi, M.; Ebrahimi, A.; Taghavi-Shahri, S.; Nateghi, R.; Rastaghi, S., (2016). Electrochemical degradation of the Acid Orange 10 dye on a Ti/PbO2 anode assessed by response surface methodology. Korean J. Chem. Eng., 33(1): 189-196 (8 pages).

Carmen, Z.; Daniel, A, S. Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. Organic pollutants ten years after the Stockholm convention-environmental and analytical update, 2012. InTech.

Chatchai, P.; Murakami, Y.; Kishioka, S.y.; Nosaka, A.Y.; Nosaka, Y., (2009). Efficient photocatalytic activity of water oxidation over WO3/BiVO4 composite under visible light irradiation. Electrochim. Acta., 54(3): 1147-1152 (6 pages).

Cho, I.H.; Zoh, K.D., (2007). Photocatalytic degradation of azo dye (Reactive Red 120) in TiO2/UV system: Optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes Pigm. , 75(3): 533-543 (11 pages).

Daneshvar, N.; Salari, D.; Khataee, A., (2003). Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters. J. Photochem. Photobiol., A. , 157(1): 111-116 (6 pages).

Daneshvar, N.; Hejazi, M.; Rangarangy, B.; Khataee, A., (2004). Photocatalytic degradation of an organophosphorus pesticide phosalone in aqueous suspensions of titanium dioxide J. Environ. Sci. Health., Part B., 39(2): 285-296 (12 pages).

Dawood, S.; Sen, T.K., (2012). Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. , 46, 1933-1946 (14 pages).

Dong, S.; Feng, J.; Li, Y.; Hu, L.; Liu, M.; Wang, Y.; Pi, Y.; Sun, J.; Sun, J., (2014). Shape-controlled synthesis of BiVO4 hierarchical structures with unique natural-sunlight-driven photocatalytic activity. Appl. Catal., B., 152(413-424 (12 pages).

Fan, H.; Jiang, T.; Li, H.; Wang, D.; Wang, L.; Zhai, J.; He, D.; Wang, P.; Xie, T., (2012). Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J. Phys. Chem. C. , 116(3): 2425-2430 (6 pages).

Fujishima, A.; Rao, T.N.; Tryk, D.A., (2000). Titanium dioxide photocatalysis J. Phys. Chem. C ., 1(1): 1-21 (21 pages).

Garcia, J.C.; Takashima, K., (2003). Photocatalytic degradation of imazaquin in an aqueous suspension of titanium dioxide. J. Photochem. Photobiol., C ., 155(1): 215-222 (8 pages).

Gupta, V.K.; Jain, R.; Mittal, A.; Saleh, T.A.; Nayak, A.; Agarwal, S.; Sikarwar, S., (2012). Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions. Mater. Sci. Eng., C . 32(1): 12-17 (6 pages).

Gupta, V.K.; Suhas; Tyagi,I.; Agarwal, S.; Singh, R.; Chaudhary, M.; Harit, A.; Kushwaha, S., (2016). Column operation studies for the removal of dyes and phenols using a low cost adsorbent. Global J. Environ. Sci. Manage., 2(1): 1-10 (10 pages).

Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W., (1995). Environmental applications of semiconductor photocatalysis. Chem. Rev., 95(1): 69-96 (28 pages).

Hu, Y.; Li, D.; Wang, H.; Zeng, G.; Li, X.; Shao, Y., (2015). Role of active oxygen species in the liquid-phase photocatalytic degradation of RhB using BiVO4/TiO2 heterostructure under visible light irradiation J. Mol. Catal. A: Chem., 408(172-178 (7 pages).

Jiang, L. C.; Zhang, W.-D., (2010). Charge transfer properties and photoelectrocatalytic activity of TiO2/MWCNT hybrid. Electrochim. Acta, 56(1): 406-411 (6 pages).

Khataee, A.; Zarei, M.; Fathinia, M.; Jafari, M.K., (2011). Photocatalytic degradation of an anthraquinone dye on immobilized TiO2 nanoparticles in a rectangular reactor: Destruction pathway and response surface approach. Desalination, 268(1-3): 126-133 (8 pages).

Konstantinou, I.K.; Albanis, T.A., (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl. Catal., B. 49(1): 1-14 (14 pages).

Li, W.; Wang, Z.; Kong, D.; Du, D.; Zhou, M.; Du, Y.; Yan, T.; You, J.; Kong, D., (2016). Visible-light-induced dendritic BiVO4/TiO2 composite photocatalysts for advanced oxidation process. J.All. Comp., 688: 703-711 (9 pages).

Liu, H.-L.; Chiou, Y.-R., (2005). Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology. Chem. Eng. J. , 112(1-3): 173-179 (7 pages).

Lung-Chyuan, C.; Tse-Chuan, C., (1993). Photobleaching of methyl orange in titanium dioxide suspended in aqueous solution. J. Mol. Catal., 85(2): 201-214 (14 pages).

Martinez-de La Cruz, A.; Perez, U.G., (2010). Photocatalytic properties of BiVO4 prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation Mater. Res. Bull. , 45, 135-141 (7 pages).

Montgomery, D.C., (2009). Design and analysis of experiments. John Wiley & Sons, New York. Design and analysis of experiments. 7th ed. John Wiley & Sons, New York.

Nakata, K.; Fujishima, A., (2012). TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C , 13, 169-189 (21 pages).

Natarajan, K.; Bajaj, H.C.; Tayade, R.J., (2017). Direct sunlight driven photocatalytic activity of GeO2/monoclinic-BiVO4 nanoplate composites. Sol. Energy , 148: 87-97 (11 pages).

Ngah, W.W.; Teong, L.; Hanafiah, M., (2011). Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym., 83, 1446-1456 (11 pages).

Nickheslat, A.; Amin, M.M.; Izanloo, H.; Fatehizadeh, A.; Mousavi, S.M., (2013). Phenol photocatalytic degradation by advanced oxidation process under ultraviolet radiation using titanium dioxide. J. Environ. Publ. Health, 2013.

Nikazara, M.; Gholivand, K.; Mahanpoor, K., (2007). Using TiO2 supported on clinoptilolite as a catalyst for photocatalytic degradation of azo dye disperse yellow 23 in water. Kinet. Catal. , , 48(2): 214-220 (7 pages).

Nong, L.; Xiao, C.; Jiang, W., (2011). Azo dye removal from aqueous solution by organic-inorganic hybrid dodecanoic acid modified layered Mg-Al hydrotalcite. Korean J. Chem. Eng., 28(3): 933-938 (6 pages).

Ong, S.-A.; Ho, L.-N.; Wong, Y.-S.; Min, O.-M.; Lai, L.-S.; Khiew, S.-K.; Murali, V., (2012). Photocatalytic mineralization of azo dye Acid Orange 7 under solar light irradiation. Des.Wat. Treat., 48(1-3): 245-251 (7 pages).

Park, J.-H.; Choi, E.; Gil, K.-I., (2003). Removal of reactive dye using UV/TiO2 in circular type reactor. J. Environ. Sci. Health., Part A. , 38(7): 1389-1399 (11 pages).

Pereira, L.; Pereira, R.; Oliveira, C.S.; Apostol, L.; Gavrilescu, M.; Pons, M.N.; Zahraa, O.; Madalena Alves, M., (2013). UV/TiO2 photocatalytic degradation of xanthene dyes. J. Photochem. Photobiol., 89(1): 33-39 (7 pages).

Poulios, I.; Aetopoulou, I., (1999). Photocatalytic degradation of the textile dye reactive orange 16 in the presence of TiO2 suspensions. Environ. Technol. , 20(5): 479-487 (9 pages).

Pourata, R.; Khataee, A.; Aber, S.; Daneshvar, N., (2009). Removal of the herbicide Bentazon from contaminated water in the presence of synthesized nanocrystalline TiO2 powders under irradiation of UV-C light. Desalination, 249(1): 301-307 (7 pages).

Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A., (2010). Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater., 177: 70-80 (11 pages).

Roy, P.; Berger, S.; Schmuki, P., (2011). TiO2 nanotubes: synthesis and applications. Angewandte Chem. Int. Ed. , 50: 2904-2939 (36 pages).

Saien, J.; Soleymani, A., (2007). Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study. J. Hazard. Mater.  144(1): 506-512 (7 pages).

Sakthivel, S.; Shankar, M.; Palanichamy, M.; Arabindoo, B.; Murugesan, V., (2002). Photocatalytic decomposition of leather dye: comparative study of TiO2 supported on alumina and glass beads. J. Photochem. Photobiol. A., 148(1): 153-159 (7 pages).

Shi, L.; Xu, C.; Sun, X.; Zhang, H.; Liu, Z.; Qu, X.; Du, F., (2018). Facile fabrication of hierarchical BiVO 4/TiO 2 heterostructures for enhanced photocatalytic activities under visible-light irradiation. J. Mater. Sci., 53(16): 11329-11342 (14 pages).

Shu, H.-Y.; Chang, M.-C., (2005). Pilot scale annular plug flow photoreactor by UV/H2O2 for the decolorization of azo dye wastewater. J. Hazard. Mater., 125: 244-251 (8 pages).

Sohrabi, M.; Ghavami, M., (2008). Photocatalytic degradation of direct red 23 dye using UV/TiO2: effect of operational parameters. J. Hazard. Mater., 153: 1235-1239 (5 pages).

Sun, Y.; Qu, B.; Liu, Q.; Gao, S.; Yan, Z.; Yan, W.; Pan, B.; Wei, S.; Xie, Y., (2012). Highly efficient visible-light-driven photocatalytic activities in synthetic ordered monoclinic BiVO 4 quantum tubes–graphene nanocomposites. Nanoscale, 4: 3761-3767 (7 pages).

Tang, W.Z.; An, H., (1995). Photocatalytic degradation kinetics and mechanism of acid blue 40 by TiO2/UV in aqueous solution. Chemosphere, 31(9): 4171-4183 (13 pages).

Toor, A.P.; Verma, A.; Jotshi, C.; Bajpai, P.; Singh, V., (2006). Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes. Pig., 68(1): 53-60 (8 pages).

Udom, I.; Ram, M.K.; Stefanakos, E.K.; Hepp, A.F.; Goswami, D.Y., (2013). One dimensional-ZnO nanostructures: synthesis, properties and environmental applications. Mater. Sci. Semicond. Process, 16(6): 2070-2083 (14 pages).

Vaez, M.; Zarringhalam Moghaddam, A.; Alijani, S., (2012). Optimization and modeling of photocatalytic degradation of azo dye using a response surface methodology (RSM) based on the central composite design with immobilized titania nanoparticles. Mater. Sci. Semicond. Process, 51(11): 4199-4207 (9 pages).

Velmurugan, R.; Swaminathan, M., (2011). An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light. Sol. Energy Mater. and Solar., 95(3): 942-950 (9 pages).

Venkatachalam, N.; Palanichamy, M.; Murugesan, V., (2007). Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol. J. Mol. Catal. A: Chem., 273(1-2): 177-185 (9 pages).

Xu, H.; Li, H.; Sun, G.; Xia, J.; Wu, C.; Ye, Z.; Zhang, Q., (2010). Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation. Chem. Eng.J., 160(1): 33-41 (9 pages).

Yingling, B.; Zongcheng, Y.; Honglin, W.; Li, C., (2011). Optimization of bioethanol production during simultaneous saccharification and fermentation in very high-gravity cassava mash. Antonie van Leeuwenhoek, 99(2): 329-339 (11 pages).

Yu, C.; Cao, F.; Li, X.; Li, G.; Xie, Y.; Jimmy, C.Y.; Shu, Q.; Fan, Q.; Chen, J., (2013). Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J., 219(86-95 (10 pages).

Zhang, A.; Zhang, J., (2009). The effect of hydrothermal temperature on the synthesis of monoclinic bismuth vanadate powders. Mater. Sci. Poland, 27: 1015-1023 (9 pages).

Zhang, L.; Long, J.; Pan, W.; Zhou, S.; Zhu, J.; Zhao, Y.; Wang, X.; Cao, G., (2012). Efficient removal of methylene blue over composite-phase BiVO4 fabricated by hydrothermal control synthesis. Mater. Chem. Phys., 136(2-3): 897-902 (6 pages).

Zhao, C.; Pelaez, M.; Dionysiou, D.D.; Pillai, S.C.; Byrne, J.A.; O'Shea, K.E., (2014). UV and visible light activated TiO2 photocatalysis of 6-hydroxymethyl uracil, a model compound for the potent cyanotoxin cylindrospermopsin. Catal. Today, 224: 70-76 (8 pages).

Zhu, J.; Yang, J.; Bian, Z.-F.; Ren, J.; Liu, Y.-M.; Cao, Y.; Li, H.-X.; He, H.-Y.; Fan, K.-N., (2007). Nanocrystalline anatase TiO2 photocatalysts prepared via a facile low temperature nonhydrolytic sol–gel reaction of TiCl4 and benzyl alcohol. Appl. Catal., B.l., 76(1-2): 82-91 (10 pages).

Zhu, Z.; Wu, R.-J., (2015). The degradation of formaldehyde using a Pt@TiO2 nanoparticles in presence of visible light irradiation at room temperature. J. Taiwan Inst. Chem. Eng., 50: 276-281 (6 pages).



Rahimi, B.; Ebrahimi, A.; Mansouri, N.; Hosseini, N., (2019). Photodegradation process for the removal of acid orange 10 using titanium dioxide and bismuth vanadate from aqueous solution. Global. J. Environ. Sci. Manage., 5(1): …, …

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.