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ABSTRACT: The change of land use/land cover has been known as an imperative force in environmental 
alteration, especially in arid and semi-arid areas. This research was mainly aimed to assess the validity of 
two major types of land change modeling techniques via a three dimensional approach in Birjand urban 
watershed located in an arid climatic region of Iran. Thus, a Markovian approach based on two suitability 
and transition potential mappers, i.e. fuzzy analytic hierarchy process and artificial neural network-multi 
layer perceptron was used to simulate land use map. Validation metrics, quantity disagreement, allocation 
disagreement and figure of merit in a three-dimensional space were used to perform model validation. 
Utilizing the fuzzy-analytic hierarchy process simulation of total landscape in the target point 2015, quantity 
error, the figure of merit and allocation error were 2%, 18.5% and 8%, respectively. However, Artificial 
neural network-multi layer perceptron simulation led to a marginal improvement in figure of merit, i.e. 
3.25%. 

KEYWORDS: Artificial neural network-multi layer perceptron (ANN-MLP); CA-Markov; Fuzzy-analytic 
hierarchy process (Fuzzy-AHP); Land use change; Simulation.

INTRODUCTION
In general, biodiversity, water and radiation 

equilibriums, release of greenhouse gases, carbon 
cycling, and livings are impacted by land use 
alteration. To render environmental management, 
particularly in relation to sustainable agriculture on 
arid or semi-arid lands, Land Use and Cover Change 
(LUCC) studies and their dynamics seem to be vital. 
There are diverse models according to assembly and 
use, which have been employed to determine LUCC 
dynamics (Verburg et al., 2002; Kamusoko et al., 
2009; Memarian et al., 2012). Dynamic systems and 
agent-based approaches are pliable, mechanistic and 
combined models which project the joined economic, 
biophysical, and human behavioral practices of land 

use alteration, spatially and/or temporally (Rounsevell 
et al., 2012; Hamilton et al., 2015). These models are 
capable to merge the multilateral quality of 
sustainability and land use, i.e. non-stationary and 
non-linear procedures, transformational alteration and 
multi-scale effects. To project land use change, the 
agent-based models are broadly utilized with some 
heading sides of sustainability (Schreinemachers and 
Berger, 2011; Memarian et al., 2014), and universal 
change (Guillem et al., 2015). Significance of LUCC 
models is obvious from the broad range of current 
modeling tactics and usages (Agarwal et al., 2002; 
Parker et al., 2003; Verburg et al., 2004; Heistermann 
et al., 2006; Memarian et al., 2013a; Geographical 
Sciences Committee, 2014). The efficiency evaluation 
of LUCC models is very challenging because they are 
essentially various and have their own expertise and 
limitations, as highlighted by Verburg et al. (2004), 
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Pontius and Chen (2006), and Luo et al. (2010). 
Thomas and Laurence (2006) expressed that Markov 
chain is one of the most well-known techniques for 
modeling LUCC utilizing existing trends. It uses 
transformation from ‘t−1’ to ‘t’ to forecast likelihoods 
of land use changes for an upcoming date ‘t+1’. The 
base of this technique is the likelihood that a specified 
piece of land will transit from one particular state to 
another. Cellular automata (CA) is one of the models 
that aid to assess local activities and consequential 
effects on overall patterns (Couclelis, 1985; Batty et 
al., 1997; Engelen et al., 1999). However, CA can be 
efficiently applied to project the spatial alteration of a 
system, according to the prespecified transition norms 
(Torrens, 2006; Adhikari and Southworth, 2012). The 
Markov approach does not consider the reasons of 
land use transitions and it is not space-sensitive. By 
employing the CA approach, CA-Markov unwinds 
rigid presumptions in relation to the Markov approach 
and respects both changes over space and time 
(Agarwal et al., 2002). CA-Markov in contrast to 
other LUCC models including Geometric modelers 
(GEOMOD) and the Conversion of Land Use (CLUE) 
is also able to propose far inclusive simulation (Mas et 
al., 2007). However, it causes concern in feigning 
land cover dynamics on a sequential scale because 
calibration of CA-Markov is performed according to 
single time span (Paegelow and Olmedo, 2005). 
Pontius and Malanson (2005) performed a comparison 
between CA-Markov and GEOMOD looking upon 
projecting robustness and rightness for various usages 
in Central Massachusetts, United States of America. 
They handled a three-stage technique to assess 
modeling vigor. First of all, calibration process was 
alienated from the validation process. Next, validity 
was evaluated at several resolutions. Eventually, 
calibrated model was paralleled with a model, which 
was a null one, that was similar to unadulterated 
perseverance. Their study indicated that the additional 
complication of three-dimensional contiguity 
regulation in CA-Markov was not effective. Paegelow 
and Olmedo (2005) investigated the constraint and 
potential of futuristic Geographic Information System 
(GIS)-based LUCC modeling. Their methods were 
constructed upon the Markov chain for temporal 
modeling, Multi Objective Land Allocation (MOLA), 
Multi Criteria Evaluation (MCE), and CA in order to 
fulfill spatial vicinity on the projected land use scores. 
The outcomes pointed to three discrete constraints; 

the first was produced through intricate variation 
within the land cover classes, the second was 
conducted utilizing solely two land cover maps for 
calibration process, and the third was created based on 
the assumption that MOLA, MCE, and CA had impact 
on spatial distribution, but not temporal distribution of 
simulated scores. Urban land use change by CA-
Markov and landscape measures was modeled and 
studied by Araya and Cabral (2010). They realized 
that CA-Markov performance with Kquantity and 
Klocation of 83 % and 87 %, respectively, was 
acceptable. They did not cut apart capability of the 
model for land use change prediction through a far 
detailed methodology like three-dimensional 
technique. The validation of CA-Markov in land use 
and cover change simulation was scrutinized at Langat 
Basin, Malaysia by Memarian et al. (2012). CA-
Markov validation analysis was carried out by means 
of the validation metrics “allocation disagreement”, 
“quantity disagreement”, and “figure of merit” in a 
three-dimensional space. The quantity error, figure of 
merit, and allocation error for simulating total 
landscape utilizing the 1990-1997 calibration statistics 
were 3.53%, 5.62% and 6.13%, in order. In this study 
area, CA-Markov displayed inadequate validity for 
LUCC replication because of uncertainties in the 
given data, future land use, cover change trends and 
the model. In this study, land change modeler (LCM) 
(Eastman, 2014) has been employed as the handled 
toolbox and an integrated software framework, to 
investigate and project LUCC, and to validate the 
simulation results. LCM is performed in the IDRISI 
software (Tewolde and Cabral, 2011), where only 
thematic raster maps with the similar land use classes 
registered in the same successive norm can be an input 
to carry out the LUCC analysis (Roy et al., 2014). By 
using LCM, there is a premier perception of the 
elements of the land use systems and necessary factors 
to program and implement the strategy and it can also 
forecast multiple land covers under different 
management scenarios and the imaginable future 
change (Costanza and Ruth, 1998; Ahmed and Ahmed, 
2012). Primarily, LCM is on the basis of CA-Markov 
that assesses land use/cover alterations between two 
spells, measures the changes, and depicts the results 
with different charts and maps. Afterward, based on 
relative transition potential maps it anticipates future 
Land Use and Land Cover (LULC) maps (Roy et al., 
2014) relying on multi-layer perceptron (MLP) neural 
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network or Logistic Regression (Perez-Vega et al., 
2012). A scheme termed as “multi-layer perceptron 
Markov chain (MLP_Markov)” model was introduced 
by Mishra et al. (2014) to simulate future land use and 
land cover maps in 2025 and 2035 according to the 
available information. Mas et al. (2014) assessed four 
program packages, i.e. DINAMICA CLUE, CA_
MARKOV and LCM as inductive pattern-based 
manners to model LUCC. In order to evaluate the 
transition potential, CA_MARKOV and CLUE use 
suitability maps and LCM and DINAMICA outline 
the likelihood of land use transitions. The land cover 
map in Dhaka city was projected using the techniques 
termed as “Stochastic Markov (St_Markov)”, 
“Cellular Automata Markov (CA_Markov)” and 
Multi Layer Perceptron Markov (Ahmed and Ahmed, 
2012). Based on the findings, the MLP_Markov model 
showed the highest appropriateness, evaluated through 
a three map contrast approach, for the prediction of 
the 2019 land cover map. Arid regions have completely 
different and complex dynamics of land use and land 
cover change, as compared to other climatic areas. 
Thus, their LULC simulation needs to be assessed and 
compared by different techniques to propose a suitable 
approach. Therefore, this work was aimed to evaluate 
the capability of two main techniques of transition 
potential mapper (Fuzzy-AHP and MLP) in simulating 
the LULC of Birjand urban watershed based on a 
Markovian approach using a three dimensional 

validation technique. This study is innovative in terms 
of comparing the mentioned methods and the type of 
validation technique used. The study has been carried 
out in Birjand urban watershed in 2017. 

MATERIALS AND METHODS
Study area 

Birjand urban watershed is placed between 57° 
57’ to 59° 40’ east longitude and 31° 20’ to 33° 31’ 
north latitude (Fig. 1). This area, with an average 
altitude of 1500 m, is placed within the dry climatic 
region in which average precipitation based on a 30 
year statistical records is 154 mm. The Birjand urban 
watershed is topographically divided into two distinct 
regions, i.e. the mountainous area in upstream and flat 
plain in downstream (Velayati and Tavasoli, 1993). 
The study area is mostly covered by poor rangelands 
which are mainly occupied by the species Artemisia 
sieberi and Artemisia aucheri (Zarei et al., 2010). The 
city of Birjand had a population of 187000 people at 
the time of the last official census in 2013. It is a fast-
growing city, thus becoming one of the major centers 
in the East of Iran (Donyavi et al., 2014).

Data set
In order to analyze and interpret the satellite 

images, they were sorted and categorized. Landsat 
images, as one of the most utilized satellite images, 
are extensively considered for mapping and planning 

 

Fig. 1: Geographic location of the study area
  

Fig. 1: Geographic location of the study area
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studies due to their spectral, spatial and temporal 
resolution (Sadidy et al., 2009). The sensors Thematic 
Mapper (TM), Operational Land Imager (OLI), and 
Enhanced Thematic Mapper + (ETM+) were utilized 
to supply Landsat images of the years 1987, 2009 and 
2015 as the source to map land use/cover classes in 
this study. The images were projected to universal 
transverse mercator (UTM), Zone 40 N with a datum 
of world geodetic system (WGS). The resolution 
merge using forward-reverse principal component 
transforms (Chavez et al., 1991) was performed to 
produce a color image with high resolution. Dark 
subtraction technique (Memarian et al., 2013b; 
Chavez, 1988) was employed for atmospheric 
scattering correction on the whole scene. In this 
work, based on the available land use maps and field 
investigations, four land use/cover categories, i.e. 
residential, irrigated agriculture, rainfed agriculture, 
and rangeland were identified. Each image was 
individually categorized using maximum likelihood 
classifier (MLC) with the overall accuracies higher 
than 95%. The computational structure of this study 
was illustrated in Fig. 2.

CA-Markov
X(t) (A random process) is considered as a Markov 

process in case that for any instant in time, t1<t2< ··· 
<tn<tn+1 (Markov, 1971). In Markov process, future is 
not dependent of the past; it means that future of a 
random process does not depend on where it is now or 
how it got there (Miller and Childers, 2004; Memarian 
et al., 2012). A Markov chain with the states {x1, x2, 
x3, ···} is defined as X[k]. The likelihood of change 
from condition i to condition j in 1 time moment is 
as Eq. 1,

pi, j = Pr (X[k + 1] = j|X[k] = i)                                  (1)

In a Markov chain with a limited number of 
conditions, such as n, the Transition Probability 
Matrix (TPM) is demarcated as Eq. 2 (Miller and 
Childers, 2004; Memarian et al., 2012):

 �

P1,1 P1,2 ⋯ P1,n
P2,1 P2,2 ⋯ P2,n
⋮ ⋮ ⋱ ⋮

Pn,1 Pn,2 ⋯ Pn,n

� 

                                                 

(2)

Fig. 2: Computational framework of the study
  

Fig. 2: Computational framework of the study
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The Markov process is driven based on the 
transition probability matrix according to the land use 
maps in two different times. Then the quantity of land 
use transition should be geographically positioned 
using the contiguity filter and cellular automata. CA-
Markov in IDRISI includes cellular automata and 
Markov chain analysis (Araya and Cabral, 2010; 
Memarian et al., 2012). Cellular automata consider 
the dynamics of alteration occasions that rooted 
in contiguity idea. According to this idea, the areas 
nearer to existing regions with a similar category are 
far probable to transit to other category. A cellular 
automaton as a cellular substance changes its state 
in view of its previous condition based on a Markov 
transition regulation and contiguous neighbors 
(Eastman, 2009). In this work, the following 5×5 
neighborhood filter was employed in CA process:

0 0 1 0 0
0 1 1 1 0
1
0
0

1
1
0

1
1
1

1
1
0

1
0
0

 

Land change modeler (LCM) 
The LCM applies back-propagation neural 

network, logistic regression or similarity-weighted 
instance-based machine learning tool (SimWeight) in 
transition potential mapping (Eastman, 2009).

Change Prediction Process in LCM
1) Change analysis: This analysis can be fulfilled 

utilizing two land cover maps with similar legends 
(Eastman, 2009). In this work, LUCC analysis was 
performed between the pairs of land uses in 1987 and 2009. 

2) Transition potential modeling: In this step, the 
transitions are assembled into a set of sub-models by 
the users and then the potential vigor of descriptive 
drivers is discovered (Eastman, 2009). The time-
dependent drivers are dynamic and recalculated over 
time, whereas static factors designate sides of basic 
capability for the change under deliberation, and 
are timely constant (Mishra et al., 2014). The MLP 
neural network, logistic regression, or a SimWeight 
approach are employed for transition modeling. 
MLP as a general design applied in Artificial Neural 
Network (ANN) was employed in this work. The 
most popular training method for MLP is back- 
propagation algorithm (Rumelhart et al., 1986). 
Generally, the MLP is an organization of interrelated 

layers of artificial neurons, hidden, input and output 
layers. Neurons in the first layer normally transmit 
weighted statistics and accidentally chosen bias using 
the hidden layers, when a neural set is organized with 
data through the input layer. The output answer is made 
at the node utilizing a function of transfer, when the 
net summation at a hidden node is defined (Kuo et al., 
2007; Kim and Gilley, 2008; Memarian et al., 2013c). 
The MLP network training is carried out using error 
adjustment learning, that indicates that the favorable 
response for the system must be recognized (Memarian 
and Balasundram, 2012; Graupe, 2013; Principe et 
al., 2015). This process, as the back-propagation 
algorithm, is loaded into the momentum learning 
(Memarian and Balasundram, 2012; Memarian et 
al., 2013c). In this work, based on the trial and error 
analysis, 8 and 4 neurons were defined on input and 
hidden layers, respectively for land use transitions to 
irrigated agriculture and rainfed agriculture. However, 
for land use transitions to the residential category, 7 
and 4 neurons were determined on input and hidden 
layers, respectively. The momentum factor and sigmoid 
constant were set at 0.5 and 1, respectively. The 50% of 
sample size per class was determined for MLP training 
and the rest for testing. The metrics Root Mean Square 
(RMS) error, accuracy rate, and skill measure were 
used to test the power of MLP in transition potential 
mapping. The skill score represents the difference 
between the calculated accuracy using the validation 
data and expected accuracy if one were to randomly 
guess at the class memberships of the validation 
pixels. This measure varies from -1 to +1 with a skill 
of 0 indicating random chance (Eastman, 2014). 
Table 1 shows the accuracy rate and skill measure 
for different transition sub-models computed through 
MLP simulation. Based on Table 1, it can be revealed 
that the best accuracy rates and skill measures were 
obtained through rangeland and residential change 
simulations which supports the validation results 
presented in Table 6.

3) Change prediction: In the final stage of land 
change modeling, LCM can project a future plan for a 
preordained future time through the historical rates of 
transition, imported from Markov chain analysis and 
the transition potential model (Eastman, 2014).

Modelling
Before all else, six calibration periods, i.e. 1987-

2001, 1987- 2004, 1987-2009, 2001-2004, 2001-2009 
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and 2004-2009 were noticed and reported simulation 
records were put under pre-analysis regarding 
goodness of fit. Based on the obtained results, 1987-
2009 period was far able to project the upcoming 
alterations of land; thus the calibration data within the 
interval 1987-2001 was utilized to elicit TPM in this 
work. In order to extract suitability maps according 
to the Fuzzy-AHP method, two kinds of criteria 
(factors and constraints) were employed to identify 
the proper lands for future transition. Parameter maps 
were regulated into a suitability continual scale from 
0 (least suitability) to 255 (highest suitability) (Fig. 3) 
utilizing Fuzzy method. Fuzzy theory, as a supplement 
to the classical Boolean theory, was presented by 
Zadeh (1965). The linear membership function was 
utilized to re-extend factor maps into a range of 0 to 
255. Analytic Hierarchy Process (AHP) was arranged 
on proficient judgment to determine significance 
scales by pair wise contrasts (Saaty, 2008). AHP was 
utilized to calculate the weights of active elements in 
suitability mapping. According to the AHP method, 

comparisons are rendered considering a definite 
judgment scale that displays how far an element 
overcomes another for a particular quality. However, 
there is a likelihood of judgment inconsistency (Saaty, 
2008; Memarian et al., 2012). The judgments may be 
too uneven to be dependable if the consistency index 
(CI) exceeds 0.1. The Consistency Ratio (CR) of zero 
signifies that the decisions are completely consistent 
(Coyle, 2004; Memarian et al., 2015).  
The factors presented in Table 2 were pooled using 
Weighted Linear Combination (WLC) technique 
(Alizadeh et al., 2013; Tajbakhsh et al., 2016) to 
extract transition suitability maps (Fig. 3). In this 
study, 27 sub-models as static or dynamic were fed 
into the LCM. The factors like proximity to road and 
proximity to existing land uses were introduced as 
dynamic factors. To measure a quantitative relationship 
among effective factors on land use change, Cramer’s 
V can be employed. The Cramer’s V value gives a Chi 
square (χ2) based degree of association (Liebetrau, 
1983). A high Cramer’s V confirms if the possible 

Table 1: Accuracy rate and skill measure for different transition sub-models in MLP approach

Transition sub-model Accuracy rate (%) Skill measure
Irrigated agriculture to rainfed agriculture 65 0.29
Irrigated agriculture to rangeland 57 0.13
Irrigated agriculture to residential 65 0.31
Rainfed agriculture to irrigated agriculture 63 0.26
Rainfed agriculture to rangeland 50 0.15
Rainfed agriculture to residential 84 0.68
Rainfed to irrigated agriculture 65 0.30
Rangeland to rainfed agriculture 77 0.53
Rangeland to residential 83 0.66
Residential to irrigated agriculture 92 0.84
Residential to rainfed agriculture 86 0.71
Residential to rangeland 55 0.18

 
  

Table 1: Accuracy rate and skill measure for different transition sub-models in MLP approach

Table 2: Form of fuzzy membership function, eigenvectors of weight (values in italic) and AHP consistency ratio for each land use class

                                       Land use
Parameter Residential Irrigated agriculture Rainfed agriculture Rangeland

Proximity to urban patches LMD – 0.37 LMI – 0.07
Proximity to villages LMD – 0.21 LMD – 0.06 LMD – 0.08 LMD – 0.09
Slope LMD – 0.08 LMD – 0.08 LMD – 0.10 LMI – 0.22
Proximity to water resources LMD – 0.13 LMD – 0.22 LMI – 0.04 LMD – 0.05
Land economic value LMI – 0.13
Proximity to road LMD – 0.09 LMD – 0.04
Proximity to agricultural lands LMD – 0.16 LMI – 0.21
Soil condition LMI – 0.11 LMI – 0.14 LMI – 0.13
Land suitability for agriculture LMI – 0.34 LMI – 0.39
Population density LMI – 0.03 LMI – 0.05
Range condition LMI – 0.38
Consistency Ratio 0.012 0.025 0.028 0.023

                      Note: LMI: Linear membership function-Monotonically Increasing, LMD: Linear membership function-Monotonically Decreasing

  

Table 2: Form of fuzzy membership function, eigenvectors of weight (values in italic) and AHP consistency ratio for each land use class
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descriptive value of the variable is worthy, although 
it may not make sure a robust efficiency as it does not 
consider the mathematical necessities of the modeling 
procedure utilized and the connection complications 
(Eastman, 2014). Therefore, to choose right land 
transitions in each sub-model, an examination of the 
sensitivity based on skill measure was conducted using 
MLP. The difference in skill delivers information on 
the influence of that variable. Fig. 4 depicts different 
transition potential maps extracted via the MLP. 

Validation
According to the calibration period of 1987-

2009, the land use map in 2015 was employed for 

validation analysis of the model. The difference 
between projected map and real map was assessed 
through the disagreement parameters (Pontius et al., 
2011; Pontius and Millones, 2011; Memarian et al., 
2012). Quantification error (quantity disagreement) 
happens when number of pixels of a category in the 
projected map is dissimilar to number of cells of 
a similar category in the observed map. Similarly, 
location error (allocation disagreement) happens if 
position of a category in the projected map differs 
from position of that category in the observed map 
(Pontius et al., 2011). Pontius and Millones (2011) 
offered the methods in which these validation 
measures are calculated based on them. This approach 

 

Fig. 3: Transition suitability maps for different land uses produced via MCE
  

Fig. 3: Transition suitability maps for different land uses produced via MCE

Fig. 4: Transition potential maps for different land uses generated through MLP
Fig. 4: Transition potential maps for different land uses generated through MLP
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was employed and explained in detail by Memarian et 
al. (2012) and Memarian et al. (2013b).

Disagreement components
The Table 3 is considered as the reference for 

extraction of disagreement indices. J denotes the 
number of classes and number of strata in a typical 
stratified sampling scheme. Each class in the simulated 
map is signed by i, which extends from 1 to J. The 
number of cells in each stratum is defined by Ni. Each 
observation is documented based on its class in the 
simulated map (i) and observed map (j). The number 
of these records is summed as the record nij in row i 
and column j of the contingency matrix. Proportion 
of the study area (Pij) with the class i in the simulated 
map and the class j in the observed map is calculated 
using the Eq. 3 (Pontius and Millones 2011; Memarian 
et al., 2012; Memarian et al., 2013b):

pij = �
nij

∑ nij
J
j=1

� � Ni
∑ Ni
J
i=1

�                                                                                                                                                                         (3)

Quantity disagreement (qg) for a desired class g is computed via the Eq. 4. 

qg = ��∑ pig
J
i=1 � − �∑ pgj

J
j=1 ��                                                                                                                                                         (4)

Total quantity disagreement (Q) which includes all J classes is calculated through Eq. 5.

Q =
∑ qg
J
g=1

2
                                                                                                                                                                                                    (5)

The Eq. 6 calculates allocation disagreement (ag) for a desired class g. The omission of class g is described by the 
first argument within minimum function, while the next argument is the commission of class g. 

ag = 2min��∑ pig
J
i=1 � − pgg, �∑ pgj

J
j=1 � − pgg �                                                                                                                   (6)

The total allocation disagreement (A1) is calculated via the Eq. 7.

A1 =
∑ ag
J
g=1

2
                                                                                                                                                                                                 (7)

The proportion of agreement (C1) is computed through Eq. 8.

C1 = ∑ pjj
J
j=1                                                                                                                                                                                                (8)

According to the Eq. 9, total disagreement (D1) is a summation of total quantity disagreement and total allocation 
disagreement. 

D1 = 1 − C1 = Q + A1                                                                                                                                                                       (9)

Figure of merit (FOM)
Intersection of witnessed change and simulated alteration divided by union of the observed change and replicated 
change will estimate another validation metric, defined as the figure of merit (FOM). FOM sorts from 0 (no 
intersection between observed and simulated changes) to 100 % (complete intersection between observed and 
simulated changes) as Eq. 10.

Figure of Merit = B / (A+B+C+D)                                                                                                            (10)

Where, A is extent of error owing to the observed change projected as persistence; B is area of correct owing to the 
observed change projected as change; C is zone of error because of the observed change projected as per change to 
incorrect class; and D is area of error because of the observed persistence projected as change (Pontius et al., 2008; 
Memarian et al., 2012).

Relative operating characteristic (ROC)
On the basis of comparison of the simulated map with the observed map; ROC is a summary statistic extended from 
several two-by-two adjacency tables. If a pixel of a desired category in the projected image locates on the similar 
category in the observed image, it fills a record in contingency table as “true positive”, if not that pixel will be 
registered as “false positive” (Pontius and Schneider, 2001; Eastman, 2015). According to this concept, ROC chart is 
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If a pixel of a desired category in the projected 
image locates on the similar category in the observed 
image, it fills a record in contingency table as “true 
positive”, if not that pixel will be registered as “false 
positive” (Pontius and Schneider, 2001; Eastman, 
2015). According to this concept, ROC chart is 
depicted by plotting a point for each threshold with 
true positives percentage on vertical axis and false 
positives percentage on horizontal axis (Pontius 
and Schneider, 2001; Eastman, 2014). Based on the 
trapezoidal instruction, ROC uses integral calculus 
to estimate the Area Under Curve (AUC). In ROC 
curve, diagonal line originates from an input image 
with the values’ locations which are randomly 
assigned (AUC=0.50). The AUC with a range of 
0.90-1.00 is classified as excellent, and the AUC with 
a range of 0.5-0.6 is placed within the fail category 
(Tape, 2006). There are also three other categories 
between these two classes: good (AUC = 0.8-0.9), 
fair (AUC = 0.7-0.8), and poor (AUC = 0.6-0.7).

RESULTS AND DISCUSSION
In this work, calibration was performed according 

to the transitions in land uses during the period 1987-
2009 (Fig. 5 and Table 4). 

Change detection analysis of land uses during the 
period 1987-2015 established that land use alterations 
were synchronized with the expansion of urban patches 
which continuously led to the acreage reduction of 
rangelands surrounding the city. Since 1987 to 2015, 
residential area has been increased over 14 km2 (112% 
increase), meanwhile, rangelands experienced an 
acreage reduction of 19 km2 (8% decrease). During this 
period, irrigated and rainfed agriculture acreages have 
increased by 0.82 and 4.5 Km2, i.e. 8.7% and 160% 
increase, respectively. According to Table 4, the change 
trends of residential and rangeland categories have the 
same slope (around 60 ha.yr-1) but in reverse order. 
During the period 1987-2009, with the expansion of 
rainfed agriculture, the acreage of irrigated agriculture 
has not changed significantly. However, from 2009 

Fig. 5: Land use maps in calibration and validation periods

Fig. 5: Land use maps in calibration and validation periods
  Table 4: Land use acreage (Km2) in different datesTable 4: Land use acreage (Km2) in different dates

Land use 1987 2009 2015 Change trend
Residential 13.19 24.05 28.89
Irrigated agriculture 9.43 9.15 10.25

Rainfed agriculture 2.83 8.28 7.38
Rangeland 237.60 227.60 218.20
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onwards an increase of 18 ha in irrigated agricultural 
lands can be observed. Markov chain products transition 
matrix (Table 5) through examining two land use maps 
of two different times, i.e. 1987 and 2009. This matrix 
was utilized to project the land use map for the goal 
point 2025. Based on TPM (Table 5), the greatest land 
use changes happened in irrigated agricultural lands. 
The transition probability of the residential category 
to the same category is higher than the transition to 
other categories, which reflects the expansion of the 
residential context. In TPM, apart from the transition 
probabilities of similar land uses together, the transition 
probabilities of irrigated and rainfed agriculture to 
rangeland, i.e. 0.3179 and 0.3133 respectively, are 
the highest probabilities. The transition probability 
of rangeland to rainfed agriculture is higher than the 
transition to other categories. However, some land use 
transitions in TPM seem to be really mismatched. For 
example, the transition of residential lands to agriculture 
or rangeland seems unreasonable which can arise from 
the errors or uncertainties in land use classification 

based on satellite imagery (Memarian et al., 2012).
The model validation traditionally recourses to the 

comparison between simulated and observed maps 
(Van Vliet et al., 2009). The credibility of the results 
is always doubtful, particularly when the model 
simulates a future plan on the basis of disturbed 
variables (Mishra et al., 2014). To analysis the model 
validation, a technique has been used to compare three 
maps, i.e. a reference map in time 1, a reference map 
in time 2 and a projection map in time 2. In this study, 
the 2009 reference map, the 2015 reference map and 
the simulated map in 2015 (according to MLP and 
Fuzzy-AHP transition potential mapping) have been 
utilized. The three map comparison for each modeling 
claim estimates the accuracy of a prediction which is 
inferable from land use persistence against land use 
alteration. According to this validation approach, it is 
permitted to differentiate between the correct pixels due 
to persistence or due to change (Pontius et al., 2008). 
According to error analysis presented in Tables 6 and 7, 
transition simulation of the rainfed agriculture category 

Table 5: Transition probability matrix for LUCC modeling based on the 1987-2009 calibration period

Table 6: Validation metrics for each land use class and total landscape using three-dimensional approach

Table 5: Transition probability matrix for LUCC modeling based on the 1987-2009 calibration period

Irrigated agriculture Rainfed agriculture Rangeland Residential
Irrigated agriculture 0.6765 0.0013 0.3179 0.0043
Rainfed agriculture 0.0639 0.6216 0.3133 0.0012
Rangeland 0.0111 0.0138 0.9653 0.0097
Residential 0.0144 0.0001 0.0153 0.9703

  
Table 6: Validation metrics for each land use class and total landscape using three-dimensional approach

Category Gain (omission) Persistence Loss
(commission)

Quantity 
Error Allocation error FOM

% of study area

MLP Fuzzy-
AHP MLP Fuzzy-

AHP MLP Fuzzy
-AHP MLP Fuzzy-

AHP MLP Fuzzy-
AHP MLP Fuzzy-

AHP
Irrigated agriculture 1 1 3 1 6 2 2 2 2 2 30 31
Rainfed agriculture 2 2 0 1 0 2 1 1 2 3 9 7
Rangeland 6 5 82 82 5 4 1 1 10 9 88 89
Residential 3 2 3 6 1 1 2 2 2 2 49 51
Total 12 10 88 90 12 9 2 2 8 8 19.10 18.5

  
Table 7: Validation results for simulation of total landscape via three-dimensional technique

Component Proportion (%)
MLP Fuzzy-AHP

Persistence simulated correctly 87.71 88.05
Persistence simulated as change 2.89 2.54
Change simulated as change to wrong category 0.46 0.43
Change simulated correctly 2.34 2.22
Change simulated as persistence 6.61 6.76
Total 100 100
Simulated Change 5.69 5.18
Observed Change 9.41 9.41

 

Table 7: Validation results for simulation of total landscape via three-dimensional technique
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in both techniques led to the lowest figure of merit (9% 
based on MLP and 7% based on Fuzzy-AHP). This 
could be due to the transit nature of this category. Land 
use transition in rainfed agriculture is very dependent 
on the quantity and the distribution of rainfall during 
a year. In a year with a low amount of rainfall, rainfed 
agricultural lands are covered by scrub. Farover, 
in the study region, due to the proximity of some 
rainfed agricultural lands to urban/rural patches, 
land conversion and cultivation for establishing the 
ownership is one of the factors affecting rangeland 
transition to low-yielding rainfed agriculture. This 
tendency of land transition in closer regions to urban 
patches is the first step of the speculation process, 
which unfortunately is a thoughtful environmental 
difficult for developing cities in Iran (Tajbakhsh 

et al., 2016). According to Table 6, simulation of 
rangeland led to the highest figure of merit as 88% 
and 89% based on MLP and Fuzzy-AHP approaches, 
respectively. This could have arisen from a high 
proportion of persistence in this category, i.e. 82%. 
Due to the complexity and the rules governing rainfed 
agriculture transitions, the persistence amount in 
rainfed agricultural lands in both Fuzzy-AHP and MLP 
approaches is very low. In both simulations, quantity 
errors were similar in all categories. However, Fuzzy-
AHP approach led to a higher allocation error in 
rainfed agriculture, i.e. 3% as compared with that by 
MLP, i.e. 2%. Furtherfar, rangeland change simulation 
by Fuzzy-AHP could result in a lower allocation error 
(9%), in comparison with that by MLP (10%). There 
was a similarity between quantity error and allocation 

Fig. 7: Map of agreement and disagreement components in Fuzzy-AHP (A) and MLP (B) simulations

Fig. 6: Agreement and disagreement components in Fuzzy-AHP (A) and MLP (B) simulations
  

Fig. 7: Map of agreement and disagreement components in Fuzzy-AHP (A) and MLP (B) simulations
  

Fig. 6: Agreement and disagreement components in Fuzzy-AHP (A) and MLP (B) simulations
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error in simulation of irrigated agriculture and 
residential regions. This confirms that simulation of 
irrigated agriculture and residential regions is effected 
by both kinds of errors. However, in the projection 
of rainfed agriculture and rangelands, allocation error 
was remarkably greater than the quantity error. In this 
work, transition inconsistency between calibration 
and validation periods mostly impacted the simulation 
of agriculture lands. The total figures of merit in 
MLP and Fuzzy-AHP simulations were 19.10% 
and 18.50%, respectively. In both simulations, total 
quantity error (2%) and total allocation error (8%) 
were similar. As presented in Table 7, simulated 
change is sum of “persistence simulated as change”, 
“change simulated as change to wrong category” and 
“change simulated correctly.” Observed change is sum 
of “change simulated as change to wrong category”, 
“change simulated correctly” and “change simulated 
as persistence”. According to Figs. 6 and 7 and Table 
7, the component “change simulated correctly” in 
MLP simulation was 2.34% which was higher than 
this component in Fuzzy-AHP simulation, i.e. 2.22%. 
Furtherfar, the component “change simulated as 
persistence” in MLP simulation was calculated to 
be 6.61% which was lower than this component in 
Fuzzy-AHP simulation, i.e. 6.76%. However, in both 

simulations the component “change simulated as 
persistence” was significantly high, which could have 
originated from the high transition rates of land uses 
especially after 2009. Based on the obtained results, 
MLP resulted in a higher “simulated change” (5.69%), 
as compared with that by Fuzzy-AHP (5.18%). This 
condition, led to a higher FOM by MLP, i.e. 19.1% 
in comparison with that index by Fuzzy-AHP, i.e. 
18.5%. However, in both simulations, because of a 
high proportion of “persistence simulated as change”, 
observed change (9.41%) was greater than simulated 
change, i.e. 5.69% and 5.18% in MLP and Fuzzy-AHP 
simulations, respectively (Table 7, Figs. 6-7). 

ROC analysis was performed for the simulation 
results of CA-Markov, as well (Fig. 8). Results showed 
that the highest and the lowest AUCs, i.e. 0.90 and 0.68 
were obtained for residential and irrigated agriculture 
change simulations, respectively, which correspondingly 
establishes excellent and poor performances (Tape, 
2006). Rainfed agriculture and rangeland classes with 
the AUCs of 0.84 and 0.73, respectively confirmed good 
and fair strength of simulations. The Pierce Skill Score 
for simulations based on MLP and Fuzzy-AHP was 
estimated at 0.96 and 0.86, respectively, which indicates 
an acceptable performance by both approaches in total 
landscape simulation. 

Fig. 8: ROC analysis results for CA-Markov simulation; (a) Irrigated agriculture, (b) Rainfed agriculture, (c) Rangeland, (d) Residential
Fig. 8: ROC analysis results for CA-Markov simulation; (a) Irrigated agriculture, (b) Rainfed agriculture, (c) 

Rangeland, (d) Residential
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According to Pontius and Malanson (2005), some 
LUCC models presume land use transition as simulated 
precisely utilizing spatial dependence imposed in a 
proximity statute. Nevertheless, as depicted in Fig. 
9, the new patches of rainfed agriculture category 
do not grow from present patches. As mentioned 
before, CA-Markov enforces spatial dependency 
through the contiguity instruction. In this way, CA-
Markov would be incapable to precisely project 
land use transition for rainfed agriculture. Once the 
major sign of land is perseverance, it is essential that 
the model emphasizes the most imperative sign of 
alteration in the landscape. The study have confirmed 
that the projecting efficiency of CA-Markov is better 
for situations where it emphases on the main sign 
and neglects noise (Pontius and Malanson, 2005; 
Memarian et al., 2012). In this area, there was 
some noise originating from alterations of small 
patches, especially in urban and agriculture classes. 
However, in this work, this noise was not correctly 
simulated using CA-Markov. The used land use maps 
were derived from satellite images via supervised 
classification. The classification of remotely sensed 
images for extracting thematic maps in general is 
on the basis of the spatial objects clustering within 
a spectral extent. However, this means an ability to 
split the gradual changeability of the Earth’s surface 
into a limited number of separate non-overlapping 
categories which are considered systematically 
exclusive and defined. This kind of method is not 
appropriate in real world due to the continual nature of 
the ecosystem characteristics. In addition, the  utilized 
image classification approaches and the standard form 
of data processing may lead to some information loss, 

as the continual spectral information is summarized 
into a set of separate categories. This would make a 
degree of uncertainty in LUCC simulation (Rocchini 
et al., 2013). As established by Pontius and Neeti 
(2010) three causes of uncertainty (model, data, and 
future land alteration processes) impacted the results 
of this work. Land use maps - in three points of time - 
were required for calibration and validation processes 
and time intervals relied on data accessibility. In 
this work, data shortage and absence of freedom in 
data assortment led to a few inconsistencies between 
validation and calibration interims in terms of 
change intensity. Furtherfar, Memarian et al. (2012) 
established that on the basis of marginal land use 
alterations over a specified period, CA-Markov cannot 
run at high performance in precise LUCC simulation. 
Markov simulations based on MLP and Fuzzy-AHP 
approaches led to the overall Kappa of 89 % and 
90%, respectively. A high proficiency of the model in 
LUCC simulation can be concluded by these Kappa 
agreement statistics based on the specified calibration 
period. However, as proposed by Pontius et al. (2011), 
the outcomes of the three-dimensional validation 
approach confirmed that these Kappa accuracies 
typically stemmed from high land persistence during 
the time (Table 6 and Fig. 6). Hence, Kappa agreement 
statistics are not capable of quantifying the model 
power in LUCC simulation. Normally, these Kappa 
indices make comparison between accuracy and a 
randomness baseline. However, Pontius and Millones 
(2011) stated that randomness is an illogical choice 
for mapping. Furtherfar, some Kappa indices suffer 
from fundamental hypothetical faults. Consequently, 
allocation disagreement and quantity disagreement are 

Fig. 9: Markovian LUCC simulation of Birjand plain in 2025 by MLP (A) and Fuzzy-AHP (B) transition potential 
and suitability mappers

 

Fig. 9: Markovian LUCC simulation of Birjand plain in 2025 by MLP (A) and Fuzzy-AHP (B) transition potential and suitability mappers
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suggested to be employed for accuracy assessment, 
as a replacement for Kappa statistics (Memarian 
et al., 2012). Based on the obtained results, there is 
not a significant difference between the performance 
strength of LUCC simulations through MLP and 
Fuzzy-AHP transition potential mappers. However, 
according to the indices FOM, Pierce Skill Score 
and the percentage of simulated change, Markov 
simulation based on MLP approach can be proposed 
as the recommended technique for LUCC simulation 
in this study. Using ANN for LUCC simulation has 
been established in multiple research works (Omrani 
et al., 2012; Perez-Vega et al., 2012; Camacho 
Olmedo et al., 2013; Mishra et al., 2014; Qiang and 
Lam, 2015). As confirmed by Perez-Vega et al. (2012) 
neural networks outputs are capable of conveying 
the concurrent alteration potential to several land use 
types far effectively than single likelihoods acquired 
through the Fuzzy-AHP transition potential mapper. 
In a study by Camacho Olmedo et al. (2013), MLP 
technique outperformed the MCE-based Markov 
model in urban growth modeling as the transition 
potential map for urban growth captured urban 
alteration far accurately than the suitability map. 
MCE-based Markov model outperformed MLP model 
in other categories or transitions as the suitability 
maps of the categories captured the land use and land 
change outlines of these classes far accurately. The 
same condition occurred in our work when the MLP 
outperformed Fuzzy-AHP for rainfed agriculture and 
total landscape simulations. However, Fuzzy-AHP 
approach could outperform MLP for the simulation of 
other categories. 

There are special potentials and constraints for each 
LUCC model. Thus, a single model is not talented 
to confine all the crucial processes involved in land 
use change simulation (Luo et al., 2010). Based on 
the results of this work and studies of Poelmans and 
Van Rompaey (2010), Arsanjani et al. (2013), and 
Memarian et al. (2012), the following modifications 
are suggested in order to improve the simulation 
precision:
	Model urban and residential areas separately using 

far deterministic criteria
	Compare MLP approach with other deterministic 

approaches like logistic regression and/or 
SimWeight for mapping transition potentials

	Integrate far decisive socio-economic variables in 
LUCC simulation, for instance population growth 

throughout the simulation period
	Dynamic incorporation of hydro-climatic 

parameters, drought indices and the influences of 
climate change scenarios on LUCC simulation

CONCLUSION
Change detection analysis of land uses during the 

period 1987-2015 established that land use alterations 
were synchronized with the expansion of urban patches 
which continuously led to the acreage reduction of 
rangelands surrounding the city. During this period, 
irrigated and rainfed agriculture acreages have 
increased by 8.7% and 160%, respectively. Markov 
simulations based on MLP and Fuzzy-AHP approaches 
led to the overall Kappa of 89 % and 90%, respectively. 
These Kappa metrics determine high competence of the 
model in LUCC simulation according to the specified 
calibration period. The outcomes of a three-dimensional 
validation method established that these Kappa 
precisions were generally caused from a high amount 
of land persistence during the time. Thus, error analysis 
was performed based on the quantity disagreement, 
allocation disagreement, metrics and figure of merit. 
Simulation of change in the rainfed agriculture 
category in both techniques led to the lowest figure 
of merit (9% based on MLP and 7% based on Fuzzy-
AHP). This could be due to the transitory nature of this 
category, which is impacted by climatic fluctuations 
and social issues. Owing to relatively high percentage 
of persistence in the rangeland category, its simulation 
led to the highest figure of merit as 88% and 89% based 
on MLP and Fuzzy-AHP approaches, respectively. In 
this study, projection of agriculture lands was mainly 
affected by the inconsistency of transition between 
validation intervals and calibration. The total figure 
of merit in MLP and Fuzzy-AHP simulations were 
19.10% and 18.50%, respectively. MLP resulted in a 
higher “simulated change” (5.69%), as compared with 
that by Fuzzy-AHP (5.18%). This condition, led to a 
higher FOM by MLP, i.e. 19.1% in comparison with 
that index by Fuzzy-AHP, i.e. 18.5%. However, in both 
simulations, due to a high proportion of “persistence 
simulated as change”, observed change (9.41%) was 
larger than simulated change, i.e. 5.69% and 5.18% 
in MLP and Fuzzy-AHP simulations, respectively. In 
this study area, due to the transitions of small patches, 
especially in urban and agriculture classes, some noises 
in the map were created during simulation. However, 
CA-Markov did not project this noise properly. The 
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image classification methodologies and the standard 
data processing applied, led to the loss of information 
while the continuous quantitative spectral information 
was summarized into a set of separate thematic classes. 
This imposed another source of uncertainty in LUCC 
simulation. In addition, due to the data shortage and 
the absence of freedom in data selection, there was 
an inconsistency between validation intervals and 
calibration in terms of transition intensity. According to 
the indices FOM, Pierce Skill Score, and the percentage 
of simulated change, Markov simulation based on 
MLP approach can be proposed as the recommended 
technique for LUCC simulation in this study.
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ABBREVIATIONS

A The area of error owing to observed 
change projected as persistence

A1 Total allocation disagreement
AG Allocation disagreement
AHP Analytic hierarchypProcess
ANN Artificial neural network

ANN-MLP Artificial neural network-multi layer 
perceptron 

AUC Area under curve

B The area of correct owing to observed 
change projected as change

C
The area of error because of observed 
change projected as change to incor-
rect class

C1 Porportion of agreement
CA Cellular automata
CA_Markov Cellular automata markov
CI Consistency Index
CLUE Conversion of land use
CR Consistency ratio

D The area of error because of observed 
persistence projected as change

D1 Total disagreement
ETM+ Enhanced thematic mapper +

FOM Figure of merit
Fuzzy-AHP Fuzzy-analytic hierarchy process
G Desired class
GEOMOD Geometric modeler
GIS Geographic Information System
Ha/yr-1 Hectar per year
I Class in the simulated map
J Class in the observed map
Km2 Kilometer square
LCM Land change modeler

LMD Linear membership function-
monotonically decreasing

LMI Linear membership function-
monotonically increasing

LUCC Land use and cover change
LULC Land use and land cover
m Meter
MCE Multi criteria evaluation
MLC Maximum likelihood classifier
MLP Multi-layer perceptron
MLP_Markov Multi-layer perceptron markov chain
mm Milimeter
MOLA Multi objective land allocation
Ni The number of cells in each stratum
OLI Operational land imager
Pij Proportion of the study area
Q Total quantity disagreement
QQ Quantity disagreement
RMS Root mean square
ROC Relative operating characteristic

SimWeight Similarity-weighted instance-based 
machine learning tool

St_Markov Stochastic markov
t Time
TM Thematic mapper
TPM Transition probability matrix
UTM Universal transverse mercator
WGS World geodetic system
WLC Weighted linear combination

X[k] Markov chain with the states {x1, x2, 
x3, ···}

X(t) Random process
% Percent
χ2 Chi Square
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