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BACKGROUND AND OBJECTIVES: Heavy metals are categorized as hazardous pollutants due to their 
incapability in decomposing and undergoing bioaccumulation and biomagnification. Heavy metal pollution 
is a global issue, particularly in emerging nations such as Indonesia. In this case, sediments contribute to 
pollution dispersion because they can transport, mobilize, and redistribute toxic compounds. The Cisadane 
river is one of 15 watersheds in Indonesia with the highest restoration priority. Therefore, it is essential 
to conduct study on the sediment quality of this river. This investigation aimed to evaluate the levels of 
cadmium, chromium, and lead in the sediments to assess the conditions of the Cisadane River.
METHODS: At eight stations (representing the midstream and downstream region), surface sediment 
samples were collected using a van Veen sediment grab based on the hypothesis that heavy metal 
pollution originated from land-based activities and migrated down river estuaries. The Thermo Scientific 
iCAP 7400 was utilized to assess heavy metals (cadmium, chromium, and lead) by adopting prior research 
methodologies and method guidelines.  
FINDINGS: Except for lead, which surpassed the interim sediment quality standard, the levels of heavy 
metals observed in the midstream and downstream sections of the Cisadane River were found to be well 
below the guideline level. In this case, lead was the metal with the highest concentration in the sediments 
of the Cisadane River, followed by chromium and cadmium. The enrichment of heavy metals in river 
sediments was most likely caused by soil leaching, municipal and industrial sewage, as well as land waste 
disposal. After the landfill area, there were two areas with the highest concentration. Therefore, this 
investigation indicated the existence of landfills as point sources of heavy metals. Regarding specifics, two 
sites following the landfill constitute the apex of heavy metal amplification. 
CONCLUSION: This analysis shows that the sediment’s cadmium, chromium, and lead contents are below 
the standards’ threshold and safe for the habitat. Cadmium, chromium and lead exceed sediment quality 
requirements in sample sites after landfills, assumed to be due to leachate discharge and landfill activities. 
This study further also reveals that landfills are point sources of heavy metals. In this case, the heavy 
metals are two to four times higher in one kilometer from the landfill’s leachate discharge. Therefore, the 
Enforcement of the Indonesia Waste Law Number 18 Year 2008 would have replaced unsanitary dumping 
including implementation of physicochemical, biological, and combination remediation techniques, with a 
vastly superior waste management system.
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INTRODUCTION
The persistence and toxicity of heavy metals in 

waterways have sparked global alarm (Islam et al., 
2015). The rapid global population growth, which has 
led to a rise in agricultural and industrial activity, is 
regarded as a significant source of metal pollution in 
aquatic environment, which may offer deadly health 
dangers to humans and wildlife (Riani et al., 2014, 
2018; Xie et al., 2022). The improper management 
of industrial and domestic waste contributes to 
the environmental problem of heavy metals in 
emerging nations, including Indonesia. Heavy metals 
are hazardous pollutants because such pollutant 
cannot be decomposed, accumulates in the body 
(bioaccumulation), and gradually moves up the food 
chain to higher concentrations (biomagnification) 
(Ali and Khan, 2019; Saher and Siddiqui, 2019; 
Vandecasteele et al., 2004). Environmental pollution 
occurs when a contaminant, including heavy 
metals, enters the environment and surpasses the 
tolerance level to be disruptive to the environment 
and dangerous to living beings (Mohammed et al., 
2011; Rosado et al., 2016). Among the various types 
of heavy metals, some are toxic, including cadmium 
(Cd), chromium (Cr) and lead (Pb), which are also 
classified as harmful heavy metals by the Agency for 
Toxic Substances and Disease Registry (ATSDR, 2012). 
People often use Cd, Cr, and Pb as raw materials for 
making furniture, as coating materials for toolkits, 
as mixtures of metallic ingredients and antifouling 
colorants, as well as in agriculture (Ayangbenro and 
Babalola, 2017; Burton et al., 2005a; Burton et al., 
2005b; Li and Ren, 2011; Liu et al., 2016). By measuring 
the heavy metal concentrations directly and estimating 
what has accumulated in the environment, specifically 
in sediments, therefore, it is possible to determine the 
degree of heavy metal contamination (Kaewtubtim et 
al., 2016). Sediments have a role in dispersing pollution 
because they can carry, mobilize, and redistribute 
harmful substances (Miranda et al., 2021). Although 
heavy metals can be deposited in sediments after being 
absorbed by suspended materials and amassing to 
high concentrations, this retention is not permanent, 
and the metals may be released if the surrounding 
environment changes (Custodio et al., 2020). United 
States Environmental Protection Agency (USEPA, 2005) 
stated heavy metals’ sorption is influenced by several 
conditions, including pH, alkalinity, and fractions of clay-
silicate and exchangeable carbonate. Frequently, heavy 

metal contamination in the sediments is evaluated 
by calculating their total metal content; where 
differences in metal levels along the watershed may 
indicate distinct metal input sources (Pagnanelli et al., 
2004). Measuring the overall concentration of metals 
in sediments is beneficial for detecting anomalies in 
the watercourse caused by several conceivable events, 
exempli gratia (e.g.) leaching from or to groundwater, 
erosion, sedimentation event; however, it does not 
reveal the chemical pattern of metals in sediments 
(Pagnanelli et al., 2004). Understanding heavy metals 
partitioning among different geochemical phases 
is crucial to evaluate the potential of bioavailable 
materials and related ecotoxicity hazards (Dixit et 
al., 2015; Kalender and Çiçek Uçar, 2013). Previous 
research has revealed that non-point source pollution 
(such as scattered residential and industrial activities) 
and point source pollution in the study area are 
responsible for various geographical and temporal 
distributions of hazardous pollutants in sediments 
(such as landfills in the Cisadane watershed). A landfill 
is a place where hazardous waste, such as exhaust 
gas emissions and liquid waste through leachate, is 
deposited (Roudi et al., 2020). Waste and pollution 
from landfills can infiltrate the aquatic environment 
because landfills are typically situated on the banks of 
river regions. Due to a lack of technological advances 
and infrastructure, waste disposal and treatment are 
especially problematic in developing nations (Essien et 
al., 2022). In Indonesia, the waste management system 
is poor, and there are almost no landfills with proper 
liner bottoms. Toxic leachates could contaminate soil 
and groundwater through non-sanitary landfills, which 
are the norm in Indonesia (Meidiana and Gamse, 
2010; Munawar et al., 2018). Consequently, detecting 
and characterizing the ecotoxicological profile of 
heavy metals in the environment affected by landfill 
leachate and the accompanying health hazards posed 
by municipal dumpsites is of utmost importance. 
Rivers are essential to life, serving as potable water 
sources, transportation routes, recreational spaces, 
and agricultural irrigation water. Introducing pollutants 
such as heavy metals into rivers will disturb the river’s 
ecosystem. Indonesia has about 5,500 major rivers 
and over 65,000 tributaries; however, over 50% of the 
rivers are contaminated (Statistic Indonesia, 2021). The 
Cisadane River is one of 15 Indonesian watersheds with 
the highest restoration priority. Same as other rivers, the 
Cisadane river provides raw water for drinking water, 
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food production, sanitation, purification, and coastal 
stabilization, among other essential uses. Research 
on heavy metals such as Cd, Cr and Pb in the Cisadane 
River is crucial, given that the river serves as a source 
of raw water for the potable water delivery systems 
in the midstream (South Tangerang, Tangerang) and 
downstream (Tangerang, and Tangerang Regency) 
areas. In addition to being surrounded by various 
anthropogenic activities (settlement, agriculture, and 
industry), the Cisadane River is a home to three final 
disposal sites for the inhabitants of this region. Even 
as recently as May 2020, one of the landfill walls 
collapsed, resulting in the release of approximately 
100 tons of waste into the Cisadane River (The Jakarta 
Post, 2020). It resulted in an immediate release 
of waste material, including heavy metals, which 
ultimately deposited in the sediment of the Cisadane 
River. Population growth and human activity along the 
river’s flow made it possible for metal pollutants to 
get into the river. These pollutants then followed the 
river’s flow downstream and into the sea. Therefore, 
this study was conducted based on the hypothesis that 
the increase in toxic metals in the Cisadane River was 
linked to anthropogenic activities in the area, namely 
non-point sources (scattered household, commercial, 
and industrial activities) and point sources (two 
landfills on the edge of Cisadane River). The hypothesis 
provided was that there was a significant difference 
between the two types of sources, which made point 
sources more likely to influence the accumulation 
of toxic heavy metals in river sediments. The above 
background shows that enriching the comprehension 
of toxic heavy metals (Cd, Cr, and Pb) contamination 
in urban river sediment to build realistic ways and 
strategies for mitigating the conflicting effects of 
heavy metals contamination on the aquatic ecosystem 
is necessary. In this case, the current study aimed to 
measure Cd, Cr, and Pb levels in the riverine sediments 
and to evaluate the river conditions based on specific 
heavy metal concentrations. Furthermore, this study 
was conducted on the Cisadane River in Indonesia 
during the dry season (April-May) of 2022.

MATERIALS AND METHODS
Study area

The Cisadane River is 138 miles long and covers 
an area of 154,652 hectare (ha). Due to its high 
pace of land change, the Cisadane watershed is 
among Indonesia’s 15 priority watersheds. Between 

1995 and 2012, the land cover changed by 63.05%. 
The most changes happened in bushland, forests, 
and rice fields by 29.65%, 27.87%, and 13.44%, 
respectively. The distance between the river and 
the city’s downtown area is primarily responsible for 
this disparity. The city downtown offers convenient 
and essential services, enabling the expansion of 
settlements and the fulfillment of other community 
demands. The Cisadane River receives water from 
the Gede-Pangrango and Halimun-Salak mountains 
upstream and empties into the Teluk Naga coast in 
the Java Sea. Furthermore, the Cisadane River passes 
through 44 sub-districts in five cities. These cities are 
Bogor Regency and Bogor City in the upstream area, 
South Tangerang and Tangerang City in the midstream, 
and Tangerang Regency in the downstream area. In 
this case, more than 15 million people reside in the 
Cisadane watershed, contributing over 8,400 tons of 
solid waste daily. In this watershed, however, three 
landfills are located directly on the Cisadane River: 
the Galuga Landfill in Bogor Regency, the Cipeucang 
Landfill in South Tangerang, and the Rawa Kucing 
Landfill in Tangerang City. The leachate water from 
the three landfills drains to the Cisadane River via 
a canal. In addition, the Cisadane River supplies tap 
water sources for the midstream and downstream 
regions.

Field sampling
At eight stations sampling (ST), a van Veen 

sediment grab was used to acquire samples of surface 
sediment under the assumption that heavy metal 
pollution originated from land-based activities and 
migrated down river estuaries into the ocean, such 
as industry, mining, and agriculture (Koesmawati et 
al., 2018; Lestari et al., 2018; Riani et al., 2014). The 
first four stations (ST01-4) represent the midstream 
region, whereas the subsequent four stations (ST05-
ST08) represent the downstream region (Fig. 1). The 
two stations were situated 1 kilometer (km) before 
and after the two landfill sites (Cipeucang and Rawa 
Kucing Landfill) and the leachate disposal sites from 
the two landfills. The samples were collected from 
three spots on the river’s right, middle, and left 
sides. Using a clean plastic spoon, the top layer of 
sediment; ~10 centimeter (cm) from each sediment 
grab sample was collected, and the sediments were 
mixed to generate a composite sample. In stainless 
steel canisters, triplicate sediment samples were 
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homogenized. The samples were then scooped using 
a rinsed plastic scoop and transferred to a 500 milliliter 
(mL) cleaned and rinsed glass canister. Furthermore, 
all samples were preserved at 4±2 degree Celsius (°C) 
in sealed plastic containers to prevent contamination.

Laboratory analysis and quality assurance/quality 
control

The Thermo Scientific iCAP 7400 Inductively 
Coupled Plasma – Optical Emission Spectrometry 
(ICP-OES) was used to analyze heavy metals by 
accommodating the USEPA (2007) method 3051a 
from prior research (Cordova et al., 2017; da Silva et 
al., 2013; Harmesa and Cordova, 2020; Puspitasari et 
al., 2020; Puspitasari and Lestari, 2018; Riani et al., 
2018). Briefly, the river surface sediment samples 
were dried in an oven at 105°C for twenty-four hours. 
The objective of the drying process was to eliminate 
the moisture. A mortar was further used to grind the 
dried samples. The grinded samples (range 0.49-0.51 
gram) were then mixed with 9 mL of nitric acid (HNO3 
or Hydrogen nitrate) and 3 mL of Hydrochloric acid 
(HCl or Hydrogen chloride). Complex organometallic 
compounds were converted to inorganic compounds 
through the treatment of HNO3 and HCl. The sample 
was then being placed in a the CEM MARS5 Xpress 
microwave digestive reactor for 15 minutes at 185°C 
and kept for 30 minutes. The samples were filtered 
using Whatman filter paper No. 41 and diluted 

to 25 mL with DDDW (Double Distilled Deionized 
Water). The sample was subsequently introduced 
to the ICP-OES to determine the concentrations 
of selected heavy metals. The National Research 
Council of Canada’s Certified Reference Material 
(CRM) PACS-3 for sediments was utilized to verify 
that the instruments and procedures were reliable 
and controlled. The sample analysis of CRM was still 
within the standard range, indicating that the method 
and ICP-OES utilized in this study were valid and 
regulated.

Data analysis
The statistical test was conducted using PAST 

Software Version 4.03, which included examining 
univariate statistics and assessing statistical 
significance differences between Cd, Cr, and Pb for 
each sampling region via the Kruskal-Wallis test for 
equal medians and Mann-Whitney pairwise post 
hoc test. Due to the absence of sediment quality 
guidelines in Indonesia, a descriptive analysis of 
the mean and standard deviation of Cd, Cr, and Pb 
concentrations in riverine sediments was performed 
and compared to sediment quality guidelines 
from the Australia New Zealand Environment and 
Conservation Council (ANZECC) and Agriculture and 
Resource Management Council of Australia and New 
Zealand (ARMCANZ), as well as Canadian Council 
of Ministers of the Environment (CCME). Using the 

 
 

Fig. 1: Geographic location of the study area along with sampling locations at Cisadane River, Indonesia 
   

   

Fig. 1: Geographic location of the study area along with sampling locations at Cisadane River, Indonesia
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same software, a Pearson correlation test was done 
to comprehend the metal’s interaction with the 
sediment.  With a higher coefficient value, it was 
considered that the metals originate from the same 
place, were interdependent and had an identical flow 
behavior (Harmesa and Cordova, 2020).

RESULTS AND DISCUSSION
Selected heavy metal concentrations in the Cisadane 
River sediments

Fig. 2 depicts the distribution of Cd, Cr, and Pb 
concentrations in riverine sediments. With an average 
value of 30.3053 ± 23.4339 milligram per kilogram dry 
weight (mg/kg), Pb had the highest concentration in 
the Riverine Sediment of the Cisadane River, followed 
by Cr (23.4672 ± 20.1228 mg/kg). Compared to Pb and 
Cr, Cd was found to have the lowest concentration 
(0.5140 ± 0.2983 mg/kg). Furthermore, the Kruskal-
Wallis and Mann-Whitney tests revealed a statistically 
significant difference (p<0.05) between Cd - Cr and Cd 
- Pb. Table 1 further illustrates the spatial distribution 
of the mean and standard deviation of the Cd, Cr, and 
Pb concentrations at each location, as well as their 
comparison to sediment quality standards. On the 
basis of sediment quality guidelines from ANZECC 
and ARMCANZ (2000) and CCME (2001), selected 
heavy metals observed (Table 1) in midstream and 
downstream Cisadane River were moderately lower 
than the guideline level, with the exception of Pb, 
which exceeded the ISQG (Interim Sediment Quality 

Guideline) from CCME (2001). The selected heavy 
metal concentrations in this study were below or 
comparable to those in other well-known major 
rivers (Gaillardet et al., 2013; Nasrabadi et al., 
2018). Selected heavy metals in the Cisadane River 
sediments were relatively lower than those in Yellow 
River (W. Li et al., 2022), Han River (X. Li et al., 2022), 
Nanfei River (Fang et al., 2022) in China, and the 
Brahmaputra River in India (Saikia et al., 2022); on the 
same magnitude compared to the Teesta River, India 
(Chettri et al., 2022) and the Oder river and Vistula 
river in Poland (Jaskuła and Sojka, 2022). However, 
heavy metals in the Cisadane River sediments were 
higher than the Kafue River and Zambezi River 
in Zambia (Nakayama et al., 2010). Compared to 
dissolved concentrations discovered in urban runoff, 
the results of this study showed a stronger link 
(Pinedo-Gonzalez et al., 2017). Greater urban land 
use resulted in higher quantities of dissolved metals 
in watersheds compared to those found in natural 
areas (Gardner and Carey, 2004; Pinedo-Gonzalez et 
al., 2017; Yoon and Stein, 2008). In general, heavy 
metal pollution levels in the Cisadane River sediments 
were still below the threshold at which they could 
cause harm to the aquatic organism. Albeit the 
selected heavy metals concentration in this study 
was moderately modest compared to the guidelines 
(Table 1), it must nevertheless be taken into account 
because Cd and Pb surpass their natural values in the 
upper continental crust. Wedepohl (1994) specifically 

 
 

Fig. 2: The concentrations of selected heavy metals in the sediments of Cisadane River. 
 

   

   

Fig. 2: The concentrations of selected heavy metals in the sediments of Cisadane River.
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stated that the natural concentrations of Cd, Cr, and 
Pb were 0.102 mg/kg, 35 mg/kg, and 17 mg/kg, 
respectively.

The largest concentration of heavy metals in the 
Cisadane River sediments was Pb, followed by Cr 
and Cd. The enrichment of heavy metals in riverine 
sediments is caused by natural sources, including 
volcanic eruption and weathering from soil or rocks, 
which causes leaching (Fang et al., 2016). In addition 
to natural sources, anthropogenic activities waste, 
such as unmanaged waste, is a source of heavy metal 
pollution (Fang et al., 2016). Pb is emitted through 
urban runoff, atmospheric deposition, combustion 
engine automobile and industrial emissions, and 
craft maintenance activities (Burton et al., 2005a; 
Hossain et al., 2019; Liu et al., 2016; Sakawi et al., 
2013). Meanwhile, Cd pollution is linked to farming 
activities such as using many phosphate fertilizers 
with Cd impurities (Liu et al., 2016). Moreover, Cd 
usually comes from activities that make farming 
more productive, such as using a lot of fertilizers and 
pesticides and mining (Ayangbenro and Babalola, 
2017; Tang et al., 2010). Furthermore, Cr is often 
found in antifouling paints used in the screen-printing 
and textile industries (Costa-Böddeker et al., 2017; 
Duodu et al., 2017). 

The linear correlation matrix of Pearson’s 
correlation coefficients between Cd, Cr, and Pb 

in Cisadane river sediments is shown in Table 2. 
According to the Pearson correlation value, the 
statistical output between Cd - Cr and between Cr 
- Pb suggested a moderately positive relationship 
(r between 0.6 and 0.8), although the correlation 
between Cr - Pb indicated a fairly strong positive 
relationship (r between 0.8-0.99). In this case, the 
three correlations had a 99% confidence interval (Table 
2). Based on the discovered Pearson’s correlation 
coefficient (Table 2), Cd - Cr and Cr - Pb were shown 
to have a moderately positive connection. Moreover, 
the correlation between Cr and Pb was significantly 
positive. This linkage demonstrated that heavy metals 
were interdependent, exhibited the same transit 
behavior, and most likely originated from the same 
origin, whether natural or manmade (Harmesa et al., 
2020; Liu et al., 2016; Suresh et al., 2012).

Spatial distribution of heavy metals in Cisadane River
Table 1 demonstrates that all sampling locations 

detected heavy metals (Cd, Cr, and Pb), showing that 
the trend of heavy metals pollution is increasing to 
the Cisadane River’s downstream section. In this 
investigation, the lowest concentrations of heavy 
metals were identified at ST01 and ST02, the first and 
second midstream sites. Nonpoint and point sources 
were the sources of heavy metals in the sediments of 
the Cisadane River. Dispersed throughout the Cisadane 

Table 1: The concentrations of selected heavy metals in each sampling station in the Cisadane River 
 

Location  Station code 
 number 

Concentration (mg/kg) 

Cd  Cr  Pb 

Midstream 
(ST01‐ST04) 

ST01  0.0628 ± 0.0614  5.3425 ± 0.7623  9.8746 ± 1.4921 

ST02  0.1825 ± 0.0139 4.2874 ± 2.1266 9.1596 ± 0.3991 

ST03  0.8000 ± 0.0295  52.1811 ± 8.2727  63.6332 ± 6.3275 

ST04  0.6854 ± 0.0573  15.8714 ± 6.2011  26.4032 ± 8.9145 

Downstream  
(ST05‐ST08) 

ST05  0.3214 ± 0.1143 13.0176 ± 2.6695 20.5500 ± 10.2734 

ST06  0.9278 ± 0.0126  57.9242 ± 9.3170  72.0347 ± 7.0349 

ST07  0.6196 ± 0.1644  15.7160 ± 6.0428  20.2391 ± 1.3909 

ST08  0.5127 ± 0.0941 23.3976 ± 3.3947 20.5476 ± 0.9902 

ANZECC and ARMCANZ 
Guidelines 

Low  1.5  80  50 

High  10  370  220 

CCME Guidelines  ISQG  0.7  52.3  30.2 

PEL  4.2  160  112 
ISQG: interim sediment quality guidelines; PEL: probable effect levels 
 
   

Table 1: The concentrations of selected heavy metals in each sampling station in the Cisadane River
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watershed were nonpoint sources in the form of 
effluent from community activities. The household 
and commercial areas were the densest in the mid-
midstream and downstream regions. Similar to 
households, the majority of industries in the Cisadane 
watershed were relatively small (those located in the 
upstream and early midstream), with 143 medium 
and heavy industries dispersed throughout the mid-
midstream and downstream regions (Kementerian 
Perindustrian, 2020). The landfills on the river’s banks 
were considered to be the point sources of heavy 
metals in the sediments of the Cisadane River. After 
landfill leachate disposal, the mean and standard 
deviation of the examined heavy metals were higher 
than the data without area (ST03 and ST06). ST03 and 
ST06, both of which are located after the landfill area, 
contained the highest concentration. Detail-wise, 
ST03 and ST06 represented the pinnacle of heavy 
metal amplification (Table 1). Moreover, at these two 
stations, Cd, Cr, and Pb concentrations exceeded the 
ISQG guidelines from CCME (2001). Furthermore, Pb 
in ST03 and ST06 surpassed the lower limit specified 
by ANZECC and ARMCANZ (2000). Heavy metals 
data’s mean and standard deviation without a sample 
point before a landfill were two to four times lower. In 
addition, a statistically significant difference occurred 
between the regions before and after landfilling for all 
examined heavy metals (p<0.01). Depending on the 
type of heavy metal, the increase occurred between 
2.89 and 12.17 times. At ST03 and ST06, Cd levels were 
4.38 and 2.89 times higher, Cr levels were 12.17 and 
4.45 times higher, and Pb levels were 6.95 and 3.50 
times higher, respectively. There was a presumption 
that there was a correlation between the landfill 
location and landfill leachate and the concentration 
of heavy metals in the sediments of the Cisadane 
River. The limitation of this study was that it did not 
investigate landfill leachate in two dump regions 
located along the Cisadane River. If a comparative 
study is undertaken, the heavy metals level in landfill 
leachate must be analyzed in greater detail. The 

results of this investigation indicated the existence of 
landfills as probable point origins of harmful heavy 
metals (Deng et al., 2018; Houessionon et al., 2021; 
Hussein et al., 2021; Robinson, 2017). Leachate 
treatment facilities in Indonesian landfills typically 
consist of ponds for collection and treatment. Some 
of the leachate in the pond is disposed of as a result 
of microbial fermentation and gravity effects (Xu et 
al., 2018); however, because the leachate treatment 
is not comparable to a sanitary landfill, the leachate 
produced and discharged into the watershed has a 
complex composition and contains toxic heavy metals 
(Hou et al., 2019; Singh et al., 2015). The leachate 
carried into the watershed will negatively impact the 
river’s environment. In turn, this will increase the 
expense of environmental management and may 
adversely affect human health (Hussein et al., 2019; 
Ishak et al., 2016). Along the Cisadane River, three 
unsanitary landfills have direct leachate discharge 
channels into the river (Nurhasanah et al., 2021; 
Sulistyowati et al., 2022). After one kilometer from the 
landfill leachate outlet, the concentration of heavy 
metals at the sampling station was two to four times 
greater. In landfill leachate, critical heavy metals are 
frequently abundant, physiologically complex, and 
bioaccumulative, rendering them highly accessible 
to trophic food systems (Atta et al., 2015; Kaschl 
et al., 2002; Sánchez-Chardi and Nadal, 2007). A 
transition from an unsanitary (open) dumping system 
to a properly sanitary landfill system, is essential for 
improving this situation since it can raise the heavy 
metals removal rate (Deng et al., 2018; Jaradat et al., 
2021; Robinson, 2017). Some levels of heavy metals 
in natural soil were found to exceed predetermined 
background values. Despite the fact that the metal 
content of these soils is considerable, it is significantly 
lower than that of waste/leachate-affected soils 
(Hussein et al., 2021). Notably, heavy metals are 
also natural trace elements that are infrequently 
harmful (Wuana and Okieimen, 2011). Under typical 
conditions, it is unlikely that metals are dissolved, 

Table 2: Pearson's correlation coefficient (r) for selected 
heavy metals concentration in Cisadane River sediments 

 
 

Heavy metals  Cd  Cr  Pb 

Cd  1     

Cr  0.7916*  1 

Pb   0.7877*  0.9254*  1 
 

Table 2: Pearson’s correlation coefficient (r) for selected heavy metals concentration in Cisadane River sediments
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leached, and transportable in the environment. 
However, it can be induced by successive reductive 
circumstances and anaerobic bio-decompositions 
(Hussein et al., 2021; Ishchenko, 2019; Li et al., 2009; 
Thongyuan et al., 2021). These circumstances may 
result in the leaching of toxic metals deposited in 
the riverine sediment (Demirbilek et al., 2013). Due 
to the decrease in oxygen content, methanogenic 
conditions have led to the dissolution of a reductive 
metal in the leachate (Demirbilek et al., 2013). 
Additionally, metal leaching occurs in soil affected by 
leachate with high organic content (DeLemos et al., 
2006; Ford et al., 2011).

Fig. 3 depicts the calculated average concentrations 
and fluctuations of Cd, Cr, Pb in the midstream and 
downstream sediments of the Cisadane River. Along 
the Cisadane Yellow River, all investigated heavy 
metals in sediments demonstrated an upward trend, 
with greater average concentrations in downstream 
than in the midstream. Cr had the most significant 
increase in the mean concentration of selected 
heavy metals from midstream to downstream, 
followed by Cd, while Pb had the smallest increase 
(Fig. 3). The average concentration of Cr in the 
midstream (19.4206 ± 20.8090 mg/kg) increased by 
41.67% in the downstream (27.5138 ± 19.4402 mg/
kg). The mean Cd concentration in the midstream 
(0.4327 ± 0.3318 mg/kg) increased by 37.60% in the 
downstream (0.5953 ± 0.2481 mg/kg). The average Pb 
content in the midstream increased by 22.28% in the 

downstream (27.2677 ± 23.5577 mg/kg to 33.3429 
± 23.9400 mg/kg). Our findings are consistent with 
the previous studies on heavy metal contamination 
of soils in the middle and lower reaches of China’s 
Xiangjiang River (Wang et al., 2008). Heavy metals 
originating from improperly managed pollution in the 
Cisadane watershed reached the aquatic ecosystem 
and were further carried by the water, and were 
deposited in river sediments. Moreover, the water 
carried pollutants from the land to the aquatic 
environment. Although many heavy metals might 
be predominantly associated with organic material 
particles or suspended sediment, heavy metals  can 
be shifted into a more bioavailable dissolved form 
(Bergamaschi et al., 2012; Roussiez et al., 2011). 
Various hydrological regimes can impact heavy metal 
mobility. For instance, during a precipitation event 
following a prolonged period of drought, overland 
water runoff is frequently the primary transport 
mechanism for anthropogenic toxic metals (Wijesiri 
et al., 2018; Yong and Chen, 2002). In this study, 
landfills were also considered point sources of toxic 
metals in addition to non-point sources of heavy 
metals throughout the Cisadane river. Widespread 
usage of non-engineered and unmanaged landfills 
without suitable bottom liners, leachate collection, 
or treatment systems prevented better management 
of solid waste from municipalities (Ishchenko, 2019). 
This has resulted in the production of leachates 
from landfills that include substantial amounts of 

Fig. 3: Comparison of selected heavy metals concentration in midstream and downstream of Cisadane River
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organic and inorganic pollutants and are particularly 
dangerous to the environment (Naveen et al., 2017; 
Öman and Junestedt, 2008). In this case, 84% of waste 
management in Indonesia was accomplished through 
waste disposal sites with open dumping landfill system 
(Munawar et al., 2018). However, the proportion of 
landfills with improved systems has not yet met the 
requirements for a sanitary landfill system (Meidiana 
and Gamse, 2010), meaning that only a portion of 
the fundamental conditions for controlled landfills 
was achieved. This leads in the release of leachates 
containing harmful substances including toxic heavy 
metals into the aquatic environment (Hussein et al., 
2021). In some landfills, leachate consists of fluids 
that have reached the open landfill from a variety of 
external sources, such as wastewater, groundwater, 
soil erosion, and precipitation generated from the 
breakdown of organic waste (Ghosh et al., 2017). 
In certain instances, groundwater flow following 
flood water subsidence can contribute significantly 
to metal loading in downstream waterways (Santos 
et al., 2011). Heavy metal emissions could be 
deposited within riverine to estuarine sediments and 
transferred to the marine system (Fernández-Cadena 
et al., 2014; González-Ortegón et al., 2019). The 
Indonesian government might have helped alleviate 
this problem by enforcing the Waste Law Number 
18 Year 2008, which mandates the replacement of 
all open dumping with more regulated landfills or 
sanitary landfills. The elimination of heavy metals 
from non-point sources, such as leachate landfills, can 
be accomplished through various methods, including 
physicochemical (coagulation/flocculation treatment, 
membrane application, and adsorption treatment), 
biological (phytoremediation, bioremediation, and 
arrangement of aerobic and anaerobic bioreactors), 
and combination (physicochemical and biological) 
techniques. The elimination of heavy metals in 
aquatic environments directly results from the 
transition to sanitary landfills (Mojiri et al., 2011). 
Changes should also be made at the regional level, 
considering available infrastructure, human capacity, 
and funding.

CONCLUSION 
The purpose of this study is to characterize 

heavy metals in Cisadane River sediments. This 
investigation leads us to conclude that the Cd, Cr, 
and Pb concentrations in the sediment are still below 

the threshold established by the standards and are, 
therefore, safe for the habitat inside. In this study, 
concentrations of Cd, Cr, and Pb were found to be 
lower than or comparable to those in other well-
known large rivers. Although the concentrations 
of heavy metals in this study are relatively modest 
in comparison to the guidelines, they must still be 
taken into account because Cd and Pb are higher 
than they should be in the upper continental crust. 
However, the concentration of Cd, Cr, and Pb exceeds 
the sediment quality guidelines in the sampling sites 
after landfills, which is believed to be the result of 
leachate discharge and landfill activities. Therefore, 
it requires special consideration including the 
implementation of physicochemical, biological, and 
combination remediation techniques. This study 
discovers that heavy metals are interdependent, 
have the same transport patterns, and most likely 
originate from the same sources. In the Riverine 
Sediment of the Cisadane River, Pb has the highest 
concentration, followed by Cr, while Cd that has the 
lowest concentration. Sources of heavy metals in the 
Cisadane River sediments comprise nonpoint and 
point sources. The nonpoint sources in the form of 
wastewater from community activities are dispersed 
throughout the Cisadane watershed. In comparison, 
two riverbank landfills are recognized as the point 
sources of heavy metals in the sediments of the 
Cisadane River. Two landfills along the Cisadane River 
discharge their leachate directly into the waterway. 
The concentration of heavy metals at the test 
location is two to four times higher one kilometer 
from the landfill’s leachate discharge. In this case, 
investigation indicates that heavy metal pollution 
in the Cisadane River’s downstream segment is 
escalating. Therefore, through the enforcement of 
the Indonesian Waste Law Number 18 Year 2008 
which would have replaced all open dumping with 
better-controlled landfills or sanitary landfills, would 
have helped the Indonesian government address this 
problem. Furthermore, further research is required 
to determine the levels of harmful heavy metals in 
leachate landfills, drain sediment in leachate ponds, 
and groundwater, which can also be contaminated by 
suboptimal management of leachate landfills.
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