Document Type : ORIGINAL RESEARCH ARTICLE

Authors

1 Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar

2 Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

3 Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825, Doha, Qatar

Abstract

Background and objectives: Global energy needs have gradually shifted toward photovoltaic solar energy, especially in the Gulf region because of the high solar-irradiance potential. However, one of the main challenges for this technology in the region is soiling, which has been reported to degrade the power output of photovoltaic modules significantly. Anti-soiling coatings are promising technologies to minimize the effect of dust on photovoltaic solar panels. Accordingly, this study aimed to synthesize aluminum, zinc, titanium, and tin oxides using mixed-based and nanoparticle-based precursors through inkjet printing techniques and investigate their potential in anti-soiling applications for PV panels.
Methods: Four metal oxides, namely, aluminum, zinc, titanium, and tin oxides, were synthesized and deposited using the inkjet printing technique for anti-soiling application. Ultraviolet-visible spectroscopy, field emission scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and contact angle measurements were performed to characterize these thin films.
Finding: The optical transmittance of the substrate using the nanoparticle ink revealed better optical properties than that using the mixed-based ink. Compared with nanoparticle samples, a homogeneous crack and a defect-free layer were observed with dense nanoparticles in all mixed inks (except for aluminum oxide ink). The contact angles indicated that the synthesized films were super-hydrophilic/hydrophilic coatings. The results of the outdoor testing revealed that up to 60% less dust was deposited on the best-performing film (aluminum oxide mixed-based ink) compared with bare glass. 
Conclusion: The outdoor experiment revealed that mixed-based thin films were better in reducing dust deposition than nanoparticle-based thin films and bare glass. This enhancement might be due to the decreased antireflection property along with a morphological contribution related to the presence of nanoparticle voids, which reduce the spectra scattering and minimize its deterioration, thus demonstrating better anti-soiling properties. The results of the outdoor test revealed that aluminum, zinc, and titanium oxides are promising materials for anti-soiling coating applications for both ink types. However, tin oxide coatings are not recommended for anti-soiling applications, as they showed the highest dust deposition rate near the bare glass performance. 

Graphical Abstract

Inkjet printing of metal oxide coatings for enhanced photovoltaic soiling environmental applications

Highlights

  • TiO2, Al2O3, ZnO, and SnO2 metal oxide films were synthesized via inkjet printing and were tested for anti-soiling environmental applications;
  • Mixed-based inks have enhanced optical properties, and when tested outdoor, approximately 60% less dust accumulation on the Al2O3 mixed-based ink film was observed compared with bare glass;
  • This enhanced performance might be due to a lower reflection triggered by the nanoparticle voids, which reduces the spectra scattering and, accordingly, boost the optical transmittance.

Keywords

Main Subjects

Open Access

©2022 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

Publisher’s Note

GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affliations.

Citation Metrics & Captures

Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

Current Publisher

GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image