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BACKGROUND AND OBJECTIVES: The hydrodynamic uncertainty of the ocean is the reason 
for testing marine structures as an initial consideration. This uncertainty has an impact on the 
natural structure of the topography as well as marine habitats. In the hydrodynamics laboratory, 
ships and offshore structures are tested using mathematical models as input to the wave marker. 
For large wavenumbers, Benjamin Bona Mahony’s equation has a stable direction and position 
in the wave tank. During their propagation, the generated waves exhibit modulation instability 
and phase singularity phenomena. These two factors refer to Benjamin Bona Mahony as a 
promising candidate for generating extreme waves in the laboratory. The aim of this research is 
to investigate the distribution of energy in each modulation frequency change. The Hamiltonian 
formula that describes the phenomenon of phase singularity is used to observe energy. This 
data is critical in determining the parameters used to generate extreme waves.
METHODS: The envelope of the Benjamin Bona Mahony wave group can be used to study the 
Benjamin Bona Mahony wave. The Benjamin Bona Mahony wave group is known to evolve 
according to the Nonlinear Schrodinger equation. The Hamiltonian governs the dynamics of the 
phase amplitude and proves the Nonlinear Schrodinger equation’s singularity for finite time. 
The Hamiltonian is derived from the appropriate Lagrangian for Nonlinear Schrodinger and then 
transformed into the Hamiltonian H(G,ϕ) with the displaced phase-amplitude variable. 
FINDINGS: Potential energy is related to wave amplitude and kinetic energy is related to wave 
steepness in the study of surface water waves. When v ̃=0.5, the maximum wave amplitude and 
steepness are obtained. When v ̃>0.5, extreme waves cannot be formed due to steepness. This 
is due to the possibility of breaking waves into smaller waves on the shore. In terms of position, 
the energy curve is symmetrical.
CONCLUSION: According to Hamiltonian’s description of the energy distribution, the smaller 
the modulation frequency, the greater the potential and kinetic energy involved in wave 
propagation, and vice versa. While the wave’s amplitude and steepness will be greatest for a 
low modulation frequency, and vice versa. The modulation frequency considered as an extreme 
wave generator is v =̃0.5, because the resulting amplitude is quite high and the energy in the 
envelope is also quite large.
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INTRODUCTION
Mathematical equations have been used to 

investigate marine structure tests (Samaras and 
Karambas, 2021; Ikhwan et al., 2021). This test 
ensures that the building will not be damaged by high-
energy waves and currents. High-energy waves have 
an impact on the natural structure of the topography 
as well as marine habitats. Extreme waves are based 
on events that have occurred and are scientifically 
recorded tests (Didenkulova, 2020). Activities in the 
hydrodynamics laboratory necessitate the use of 
mathematical models for water surface waves. The 
water waves created in this laboratory are used to 
assess the durability of ship and offshore structure 
models. There are several mathematical models that 
have been used including Korteweg de Vries (KdV) 
(Horn et al., 1999; Karjanto et al., 2010) and Benjamin 
Bona Mahony (BBM) (Shiralashetti and Hanaji, 2021). 
However, the wave that will be generated has high 
characteristics and will not break, which is known 
as an extreme wave (Waseda et al., 2012; Zhao et 
al., 2010). Given the limitations of the laboratory’s 
current testing pool, this characteristic is required. 
When the height of a wave exceeds 2.2 times that 
of the average wave, it is considered extreme (Dean, 
1990). Following the simplification of the Boussines 
Equation, KdV and BBM, have only one direction 
of propagation. Korteweg de Vries was the first to 
propose the KdV equation (Korteweg et al., 1895). 
A study of KdV revealed that the resulting waveform 
was unstable for large k wavenumbers (Myint-U et 
al., 2007, Wang et al., 2018). The characteristics of 
the waves generated in the hydrodynamic laboratory 
pond, on the other hand, must have a short wavelength 
or a large wave number. These flaws appear to be 
overcome by the BBM equation (Benjamin et al., 
1972). BBM wave is useful as initial wave because 
it does not propagate in short waves with large 
wavenumbers (Debnath, 2012; Ren et al., 2021). 
Furthermore, it is known that the BBM wave exhibits 
modulation instability during propagation (Halfiani et 
al., 2018, Zakharov, 2006). This modulation instability 
is one of the drivers of the emergence of extreme 
waves. As a result, BBM waves are both intriguing 
and promising in terms of generating extreme waves 
in the laboratory. The modulation frequency which 
is at modulation instability ( 0 2ν< < ) and phase 
singularity interval ( 0 3 / 2ν< <  ) is an important 
input and it is necessary to find its value to avoid trial 

and error when testing on the wave tank (Fadhiliani 
et al., 2020). The BBM wave can be studied using 
either the BBM equation (Qausar et al., 2019) or the 
envelope of the BBM wave group. The BBM wave 
group is known to evolve according to the Nonlinear 
Schrodinger equation (NLS) (Hu et al., 2015), and a 
phase singular phenomenon appears when the real 
value of the amplitude SFBA  disappears (Conforti et 
al., 2020; Wang and Wei, 2020). The presence of wave 
dislocation, as indicated by the merging or splitting 
of two waves, characterizes phase singularity. The 
amplitude of the wave changes significantly as a 
result of this phenomenon (Andonowati et al., 2007). 
The investigation of wave dynamics using the BBM 
group envelope, which is interpreted in the form of 
an Argand diagram, reveals the same thing: phase 
singularity appears in wave propagation (Fadhiliani et 
al., 2020). The Hamiltonian can also be used to explain 
this phase singularity. Hamiltonian can also explain 
the distribution of wave energy during its propagation 
because it contains potential energy (Sulem and 
Sulem, 1999). The wave group envelope equation, 
namely NLS, is used to derive this Hamiltonian 
formula. The aim of this research is to investigate the 
distribution of energy in each modulation frequency 
change. The modulation frequency is changed based 
on the value of the modulation instability interval, 
ie 0 2ν< < . In this range there is also a phase 
singularity interval, ie 0 3 / 2ν< < . It is done to 
improve knowledge of the energy characteristics of 
waves during their propagation and to determine 
the appropriate parameters for generating extreme 
waves in the laboratory. This study has been carried 
out in the Modeling and Simulation Laboratory, 
Department of Mathematics, Universitas Syiah Kuala, 
Indonesia in 2021.

MATERIALS AND METHODS
BBM Equation and wave group envelope

The Benjamin Bona Mahony (BBM) equation 
simulates one-way wave propagation with high wave 
numbers and low amplitudes. The energy formula 
takes using Eq. 1 (Benjamin et al., 1972).

0.t x x xxtη η ηη η+ + − =   (1)

It is assumed that ansatz is periodic, 
( ) ( ), , . ,ix t a x t e c cθη = +  as a solution to the Eq. 1, 

where ( )kx tθ ω= − , ( ),a x t  express the amplitude of 
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the wave, k is the wavenumber, ω  is the frequency 
of the wave, and c.c. declares complex comrade. 

The envelope or curve of the energy wave 
amplitude evolves according to the NLS equation, 
allowing these equations to be used to analyze the 
propagation of the energy wave envelope. Spatial 
NLS equations can be used as a mathematical model 
to predict the evolution of the envelope in space. The 
reduction in the BBM equation’s spatial NLS equation 
is expressed using Eq. 2 (Slunyaev et al., 2015). 

2 0,ˆ ˆA i A A Aξ ττβ γ+ + =       (2) 

where, A  express the envelope amplitude, 

dispersive coefficient 
2

3ˆ ù2 /p p
k

β ω
 

= − + 
 

, nonlinear 

coefficient 2
2 /

1 8
ˆ

2 2
k p

p k k
γ ω

ω ω
 

= − − + − 
 with ( ) ( )21 2 / 1p k kω= + +  

through the multiple scale method (Halfiani et al., 

2017). Eq. (2) is obtained by applying the fast to slow 

variable transformation, where ( )kx tθ ω= −  as fast 

variable and slow variable; 2xξ ε= , ( )/ ,t x pτ ε= −  

( ) ( ), , .a x t Aε ξ τ=  Independent variables ξ  and τ  
express different meanings for different problems. 
In the case of dispersive waves,  ξ describes spatial 
variables (space) and τ  represents the time variable. 

Spatial NLS is appropriate for problems involving 
wave signals as the initial signal on the wave marker 
to describe space propagation. The NLS equation 
has numerous solutions that describe various 
phenomena. Soliton on Finite Background (SFB) is 
one of many NLS exact solutions that can describe 
extreme wave events in a hydrodynamics laboratory 
(Karjanto et al., 2007).

SFB with displaced variables
The SFB solution is a non-linear interaction of 

an amplitude monochromatic signal 
0 ,r  i.e. 2

0
0 ,i rr e γ τ−  

which is disturbed by a modulating wave with a 
small κ  wavenumber interval and results in an 
instability that increases exponentially with the rate 

( ) 2 2 2
02rσ κ κ βγ β κ= − . A signal of this type is known 

as a Benjamin Feir (BF) signal (Benjamin and Feir, 
1967; Karjanto et al., 2011). The SFB wave signal was 
chosen because it can be generated with moderate 

amplitude on the wavemaker. While the other 
solutions, Ma breather soliton (Mahato et al, 2021), 
Akhmediev breather soliton (González-Gaxiola and 
Biswas, 2018) and the rational solution, all solutions 
describe the finite background wave type, they are 
not suitable as wavemaker inputs in practice. The Ma 
soliton wave signal cannot be used because it requires 
a maximum amplitude as input to the wavemaker, 
and the rational solution is difficult to use because 
the rational wave signal has an infinite modulation 
period, or it is not periodic with respect to space or 
time (Karjanto, 2006). The SFB solution to the spatial 
NLS, using Eq. 3.

( ) ( ) 2
0

0, , ,i r
SFBA A r e γ ξξ τ ξ τ −=  (3)

Where, 

( )

( ) ( )( )
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and v  states the modulation frequency, 

( ) 2 2 2
0

ˆ ˆ2 ˆv v r vσ βγ β= −  and ( )0
ˆˆˆ / /v v r γ β= .

Displaced phase-amplitude variables are the 
results of the transformation of SFB variables that 
were originally in real form into complex forms (van 
Groesen et al., 2006). Its purpose is to investigate 
changes in amplitude in complex planes with phase 
that is solely dependent on position.  This NLS solution 
is derived based on variational formula depends on 
phase φ . With ( ),ξ τ  = (0,0) as the maximum position 
and time (Fig. 1).

As a result of the change in phase with respect 
to position, the wavelength of the carrier waves 
from the wave group changes, and this becomes a 
driving force towards extreme waves. SFB form with 
displaced phase-amplitude variables is given using 
Eq. 4.

( ) ( ) ( )0, ,A A Fξ τ ξ ξ τ= , (4)

where, ( ) ( ) ( ),, , 1iF G e φ ξ τξ τ ξ τ= − , ( ),φ ξ τ  as a 
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replacement phase, and ( ),  G ξ τ as a replacement 
amplitude.

The phase singularity phenomenon can be 
proven by transforming the SFB variable into a 
complex form and presenting the results in an 
Argand diagram. When the modulation frequency is 
in the interval 0, 3 / 2 

  , the phenomenon of phase 
singularity occurs. This interval is represented by 
a straight line that passes through the origin twice 
(Fig. 2a). Meanwhile, for waves with modulation 
frequencies in the modulation instability ( )0, 2  
interval but not in the phase singularity interval, the 
straight line on the Argand diagram passes through 
the origin only once (Fig. 2b). A significant increase 
in amplitude is caused by modulation instability, 
which is a mechanism for extreme wave and phase 
singularity phenomena.

Hamiltonian formula
In Lagrangian form, the NLS equation is a dynamic 

system. The integral of the equation contains a 
large number of quantities. One of the quantities 
in question is Hamiltonian, but there is also wave 
energy, mass, or wave power in optics, as well as a 
conserved quantity known as momentum (linear). The 
equations for wave-ship interactions are based on the 
Lagrangian variational principle, which results in the 
combined system being formulated as a Hamiltonian 
system (van Groesen et al., 2017).  Because it contains 
potential energy and proves singularity for finite time 
in the NLS equation, the Hamiltonian plays a role in 
regulating phase amplitude dynamics.

The Hamiltonian is derived from the Lagragian 
according to the NLS equation which satisfies the 
evolution of the BBM wave envelope. The exact solution 
from NLS was chosen, namely SFB because it is able to 

 
Fig. 1: Graph of envelope SFBA  for ( )0 , , , (1,1,1,r vβ γ =   1/ 2 )  

(Fadhiliani et al., 2019) 
  

Fig. 1: Graph of envelope 
SFBA  for ( )0 , , , (1,1,1,r vβ γ = 

 1/ 2 ) (Fadhiliani et al., 2019)

 
Fig. 2: Argand diagram SFB for ( ( )0; ) 0.2;0.9186r k = ; (a) 1v =  and (b) 1.3v =   

(Fadhiliani et al., 2020) 
  

(a) (b) 

Fig. 2: Argand diagram SFB for ( ( )0; ) 0.2;0.9186r k = ; (a) 1v =  and (b) 1.3v =  (Fadhiliani et al., 2020)
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explain the dynamics of wave propagation that have 
modulation instability and is suitable for input signals to 
wavemakers in the laboratory. The SFB transformation 
uses displaced variables so that they can be interpreted 
geometrically, and these variables are also used in 
Hamiltonian. The Hamiltonian for NLS, using Eq. 5.

( ) 2 41 1  ,
2 4

H A A A dτβ γ τ
∞

−∞

 = − ∂ + 
 ∫   (5)

so that the Hamiltonian transformation ( ),  H G φ
is obtained which contains the displaced phase-
amplitude variable using Eq. 6.

( )

( ) ( )

( )( )

/2

/2

2 22 2
0

24
0

,

1
2  .
1 2cos 1
4

T

T
H G

r G G
d

r G G

τ τ

φ

β φ
τ

γ φ

−
=

  − ∂ + ∂  
 
 + − + 
 

∫
 (6)

The Hamiltonian equation ( ),  H G φ  containing 
the displaced phase-amplitude variable begins with 

the spatial NLS equation and is not time dependent. 
Because the Hamiltonian for this system is not time 
dependent, Hamiltonian represents total energy as 
the sum of kinetic and potential energies and that it is 
independent of time (Akhmediev et al., 1997; Eisberg 
and Resnick, 1985). The total energy is conserved 
and is the sum of the kinetic and potential energies. 
Hamiltonian provides a phase-space integrated 
solution that is good for equations of motion and can 
also be interpreted geometrically (Karjanto, 2006).

RESULTS AND DISCUSSION
The Hamiltonian function is used to investigate 

the distribution of BBM wave energy during its 
propagation. Because it contains potential energy, 
the Hamiltonian plays a role in regulating phase 
amplitude dynamics and also in proving singularity 
at finite time in the NLS-BBM equation. Previously, 
the Hamiltonian form ( ) ,H G φ  containing displaced 
phase-amplitude variables was obtained. Because 
the Hamiltonian for this system does not depend on 
time, it will be equal to the mechanical energy or total 
energy, which is the sum of the kinetic and potential 
energies. The variables and parameters considered 
are non-dimensional, so the presentation of figures 
does not use units.

The results for normalized conditions are 
presented visually in Fig. 4. The modulation 
frequency is ½v =  in the interval of modulation 
instability, and other parameters are 1. The red 
curve in Fig. 4 represents potential energy, the green 
curve represents kinetic energy, and the blue curve 
represents the Hamiltonian. It was found that the 
curve has symmetry with respect to position as shown 

 
 

Fig. 3. Schematic diagram of methods 
  

Soliton on Finite Background 

Hamiltonian H(𝐴𝐴𝐴𝐴) 

 displaced phase-amplitude 
variables  

Hamiltonian H(𝐺𝐺𝐺𝐺, 𝜙𝜙𝜙𝜙) 

Nonlinear Schrodinger 

Fig. 3. Schematic diagram of methods

 
Fig. 4: (a) Energy distribution and (b) Hamiltonian’s curve for normalized ( )0 , , , (1,1,1,r vβ γ =   ½ ) 

  

(a) (b) 

Fig. 4: (a) Energy distribution and (b) Hamiltonian’s curve for normalized ( )0 , , , (1,1,1,r vβ γ =   ½ )
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in the graph of the envelope (Fig. 1). The resulting 
energy H has the same value on the negative and 
positive sides of the variable of position in space ξ
. The shape of the symmetry is due to the symmetry 
envelope generated by the normalized frequency. 
This is an early sign that the distribution of wave 
energy in its propagation affects the amplitude and 
phase angle of the wave.

Fig. 5 contains the energy distribution and 
Hamiltonian curve for the modulating frequency at 
interval of the phase singularity phenomenon, it is 
0 3 / 2ν< < . In this frequency group, the curve also 
has a symmetrical shape with respect to position and 
has an optimum value when ξ  = 0 according to the 
initial assumption. For modulation frequency 0.5v =  

and  0.7,v =  kinetic energy has a larger portion than 
potential energy, both are almost the same when the 
modulation frequency 1 v = .

The energy distribution and Hamiltonian curves 
presented in Fig. 6 for the modulation frequency 
are outside the phase singularity interval but in the 
modulation instability interval, ie 0 2ν< < . The 
curve has a symmetrical shape with respect to position 
and peak occurs when v. Potential energy has a larger 
portion than kinetic energy when the modulation 
frequency 1.3v =  and 1 .4v = , but is not greater than 
the potential energy in the wave with less frequency.

Potential energy is energy related to position due 
to the influence of gravity. When viewed physically in 
the study of surface water waves, potential energy is 

 
Fig. 5 : Energy distribution (left column) and Hamiltonian’s curve (right column) for ( ( )0; ) 0.2;0.9186r k = ; (a) - 

(b)  v  = 0.5, (c) – (d)  v =  0.7, and (e) – (f) v =  1 
  

(b) (a) 

(d) (c
 

(f) (e) 

Fig. 5 : Energy distribution (left column) and Hamiltonian’s curve (right column) for ( ( )0; ) 0.2;0.9186r k = ; (a) - (b)  v  = 0.5, (c) – (d)  v =  

0.7, and (e) – (f) v =  1
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related to the wave amplitude. On the other hand, 
there is kinetic energy related to the wave motion to 
reach a certain speed and physically related to the 
steepness of the wave. Based on Figs. 5 and 6, the 
largest potential energy and kinetic energy are in the 
wave with the modulation frequency 0.5v =  which is 
the smallest modulation frequency in this study.

The wave amplitude for the modulating frequency 

0.5v =  is shown by the envelope curve (Fig. 7). The 
amplitude for that frequency has a greater value than 
the wave amplitude at other modulating frequencies. 
Meanwhile, the phase angle with the same modulation 
frequency is shown through the Argand diagram (Fig. 
7a) and is found to have a greater value than the phase 
angle at other modulating frequencies (the envelope 
curve and Argand diagrams for other frequencies can 

 
Fig. 6 : Energy distribution (left column) and Hamiltonian’s curve (right column) for ( ( )0; ) 0.2;0.9186r k = ; (a) - 

(b)  v  = 1.3 and (c) – (d)  v =  1.4 
  

(b) (a) 

(c) (d) 

Fig. 6 : Energy distribution (left column) and Hamiltonian’s curve (right column) for ( ( )0; ) 0.2;0.9186r k = ;
 (a) - (b)  v  = 1.3 and (c) – (d)   1.4

 
Fig. 7 : (a) Argand diagram and (b) envelope, for ( ( )0; ;  ) 0.2;0.9186;0.5r k v =

   

 

(a) (b) 

Fig. 7 : (a) Argand diagram and (b) envelope, for ( ( )0; ;  ) 0.2;0.9186;0.5r k v =
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be seen in Figs. 1 and 2). Thus, it is obtained that the 
amplitude will be smaller for the greater the modulation 
frequency. Similarly, the phase angle will be smaller 
for the greater the modulation frequency and the 
greater the phase angle, the steeper the wave will be. 
The generated wave (extreme) is a high wave and not 
broken. The use of a smaller modulation frequency 
seems to have to be decided with great consideration. 
High waves are needed to test the durability of the 
model ship in the test pool, but breaking waves should 
be avoided because they can damage laboratory 
facilities. More detailed observations are needed to see 
how the energy distribution relates to other parameters. 
They are wave number and initial amplitude in order to 
determine the combination of parameters to be used in 
order to obtain a wave with a maximum height and can 
maintain its shape.

CONCLUSION
The distribution of energy in wave propagation 

is studied to complete information about the wave 
characteristics that will be used as the initial signal input 
to the wavemaker. The characteristics of the waves that 
have been obtained are used to decide whether certain 
mathematical models in this case BBM are suitable to 
be applied in the hydrodynamics laboratory in order to 
obtain extreme waves or at least approach them with all 
their limitations. This study simply computes some signal 
input modulation frequency in wave generation. This is 
for efficient use of the laboratory, avoiding the practice 
of trial and error. Based on the information that has been 
obtained previously, that the BBM wave experiences 
modulation instability for the modulation frequency 
at intervals of 0 2  ν< <  which causes amplitude 
amplification. Then the phase singularity phenomenon 
also appears in wave propagation which gives a significant 
increase in amplitude for the modulation frequency 
interval  0 3 / 2ν< < ). It is interesting to see the 
energy distribution of the BBM wave in the modulation 
frequency interval. Singularities and energy distributions 
can be described by the Hamiltonian. The Hamiltonian 
used contains displaced-phase amplitude in a complex 
plane with a phase that only depends on position, so that 
the Hamiltonian will be equal to the total energy which is 
the sum of the potential energy and kinetic energy. The 
modulation frequency considered as an extreme wave 
generator is 0.5ν = , because the resulting amplitude is 
quite high and the energy in the envelope is also quite 
large. Hamiltonian curve is symmetrical with respect to 

position. The modulation frequency affects the amount 
of energy that participates in wave propagation. The 
smaller the modulation frequency, the greater the 
potential energy and kinetic energy. Potential energy is 
related to the amplitude and kinetic energy is related 
to the steepness of the wave so that the amplitude 
and steepness of the wave will be maximum for small 
modulating frequencies. In practice, even if a wave with a 
maximum amplitude is desired, the selection of a smaller 
modulation frequency must be considered because it will 
have an impact on the steepness of the resulting wave. 
Other parameters, namely wave number and initial 
amplitude, are limitations in this paper, so it can be a 
concern to get closer to the goal of extreme waves in the 
laboratory.
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ABBREVIATIONS 
A Equation of envelope amplitude

A  
Modulus of complex number A

0A  Plane wave solution of the NLS equation

a  Equation of amplitude
BBM Benjamin Bona Mahony
BF Benjamin Feir

β  Dispersion coefficient of the NLS equation

β̂  
Dispersion coefficient of the NLS Spatial 
equation

. .c c  Conjugate complex
Eq. Equation
e  Euler’s Number, e 2,71828= …
ε  Small positive real number parameter

η  Wave elevation

F Complex amplitude of waves on finite 
background

Fig. Figure
G Real-valued displaced amplitude

γ  Nonlinear coefficient of the NLS equation

γ̂  
Nonlinear coefficient of the NLS spatial 
equation

H Hamiltonian

i  Imaginary number, i 1= −
KdV Koerteweg de Vries
κ  Modulation wavenumber

k  Dimensionless wave number

k  Dimensional wavenumber
NLS Nonlinear Schrödinger
v  Modulation frequency

v̂  Normalized v
v  Dimensional modulation frequency

ω  Dimensionless wave frequency;

ω  Dimensional wave frequency

p  Phase of carrier wave

φ  Displaced phase

0r  
The initial amplitude of the dimensionless 
wave

0r  The initial amplitude of the dimension wave

σ  Instability level
SFB Soliton on Finite Background

T  Period

t  Time variable

τ  Time slow variable

θ  Phase of monochromatic wave

x  Spatial variables

ξ  Spatial slow variable
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