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The hydrodynamic uncertainty of the ocean is the reason
for testing marine structures as an initial consideration. This uncertainty has an impact on the
natural structure of the topography as well as marine habitats. In the hydrodynamics laboratory,
ships and offshore structures are tested using mathematical models as input to the wave marker.
For large wavenumbers, Benjamin Bona Mahony’s equation has a stable direction and position
in the wave tank. During their propagation, the generated waves exhibit modulation instability
and phase singularity phenomena. These two factors refer to Benjamin Bona Mahony as a
promising candidate for generating extreme waves in the laboratory. The aim of this research is
to investigate the distribution of energy in each modulation frequency change. The Hamiltonian
formula that describes the phenomenon of phase singularity is used to observe energy. This
data is critical in determining the parameters used to generate extreme waves.

The envelope of the Benjamin Bona Mahony wave group can be used to study the
Benjamin Bona Mahony wave. The Benjamin Bona Mahony wave group is known to evolve
according to the Nonlinear Schrodinger equation. The Hamiltonian governs the dynamics of the
phase amplitude and proves the Nonlinear Schrodinger equation’s singularity for finite time.
The Hamiltonian is derived from the appropriate Lagrangian for Nonlinear Schrodinger and then
transformed into the Hamiltonian H(G,¢) with the displaced phase-amplitude variable.

Potential energy is related to wave amplitude and kinetic energy is related to wave
steepness in the study of surface water waves. When v'=0.5, the maximum wave amplitude and
steepness are obtained. When v'>0.5, extreme waves cannot be formed due to steepness. This
is due to the possibility of breaking waves into smaller waves on the shore. In terms of position,
the energy curve is symmetrical.

According to Hamiltonian’s description of the energy distribution, the smaller
the modulation frequency, the greater the potential and kinetic energy involved in wave
propagation, and vice versa. While the wave’s amplitude and steepness will be greatest for a
low modulation frequency, and vice versa. The modulation frequency considered as an extreme
wave generator is V'=0.5, because the resulting amplitude is quite high and the energy in the
envelope is also quite large.
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Mathematical equations have been used to
investigate marine structure tests (Samaras and
Karambas, 2021; Ikhwan et al., 2021). This test
ensures that the building will not be damaged by high-
energy waves and currents. High-energy waves have
an impact on the natural structure of the topography
as well as marine habitats. Extreme waves are based
on events that have occurred and are scientifically
recorded tests (Didenkulova, 2020). Activities in the
hydrodynamics laboratory necessitate the use of
mathematical models for water surface waves. The
water waves created in this laboratory are used to
assess the durability of ship and offshore structure
models. There are several mathematical models that
have been used including Korteweg de Vries (KdV)
(Horn et al., 1999; Karjanto et al., 2010) and Benjamin
Bona Mahony (BBM) (Shiralashetti and Hanaji, 2021).
However, the wave that will be generated has high
characteristics and will not break, which is known
as an extreme wave (Waseda et al., 2012; Zhao et
al., 2010). Given the limitations of the laboratory’s
current testing pool, this characteristic is required.
When the height of a wave exceeds 2.2 times that
of the average wave, it is considered extreme (Dean,
1990). Following the simplification of the Boussines
Equation, KdV and BBM, have only one direction
of propagation. Korteweg de Vries was the first to
propose the KdV equation (Korteweg et al., 1895).
A study of KdV revealed that the resulting waveform
was unstable for large k wavenumbers (Myint-U et
al., 2007, Wang et al., 2018). The characteristics of
the waves generated in the hydrodynamic laboratory
pond,ontheotherhand, musthaveashortwavelength
or a large wave number. These flaws appear to be
overcome by the BBM equation (Benjamin et al.,
1972). BBM wave is useful as initial wave because
it does not propagate in short waves with large
wavenumbers (Debnath, 2012; Ren et al., 2021).
Furthermore, it is known that the BBM wave exhibits
modulation instability during propagation (Halfiani et
al., 2018, Zakharov, 2006). This modulation instability
is one of the drivers of the emergence of extreme
waves. As a result, BBM waves are both intriguing
and promising in terms of generating extreme waves
in the laboratory. The modulation frequency which
is at modulation instability (0<v<+/2) and phase
singularity interval (0<v <+/3/2 ) is an important
input and it is necessary to find its value to avoid trial
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and error when testing on the wave tank (Fadhiliani
et al., 2020). The BBM wave can be studied using
either the BBM equation (Qausar et al., 2019) or the
envelope of the BBM wave group. The BBM wave
group is known to evolve according to the Nonlinear
Schrodinger equation (NLS) (Hu et al., 2015), and a
phase singular phenomenon appears when the real
value of the amplitude \ASFB\ disappears (Conforti et
al., 2020; Wang and Wei, 2020). The presence of wave
dislocation, as indicated by the merging or splitting
of two waves, characterizes phase singularity. The
amplitude of the wave changes significantly as a
result of this phenomenon (Andonowati et al., 2007).
The investigation of wave dynamics using the BBM
group envelope, which is interpreted in the form of
an Argand diagram, reveals the same thing: phase
singularity appears in wave propagation (Fadhiliani et
al., 2020). The Hamiltonian can also be used to explain
this phase singularity. Hamiltonian can also explain
the distribution of wave energy during its propagation
because it contains potential energy (Sulem and
Sulem, 1999). The wave group envelope equation,
namely NLS, is used to derive this Hamiltonian
formula. The aim of this research is to investigate the
distribution of energy in each modulation frequency
change. The modulation frequency is changed based
on the value of the modulation instability interval,
ie 0<v<+/2. In this range there is also a phase
singularity interval, ie 0<p<+/3/2. It is done to
improve knowledge of the energy characteristics of
waves during their propagation and to determine
the appropriate parameters for generating extreme
waves in the laboratory. This study has been carried
out in the Modeling and Simulation Laboratory,
Department of Mathematics, Universitas Syiah Kuala,
Indonesia in 2021.

BBM Equation and wave group envelope

The Benjamin Bona Mahony (BBM) equation
simulates one-way wave propagation with high wave
numbers and low amplitudes. The energy formula
takes using Eq. 1 (Benjamin et al., 1972).

7,1, 11, =1, = 0. (1)
It is assumed that ansatz is periodic,

U(x,f)=a(x,t)€w+c-0, as a solution to the Eq. 1,
where 0=(kx—at), a(x,t) express the amplitude of



the wave, k is the wavenumber, @ is the frequency
of the wave, and c.c. declares complex comrade.

The envelope or curve of the energy wave
amplitude evolves according to the NLS equation,
allowing these equations to be used to analyze the
propagation of the energy wave envelope. Spatial
NLS equations can be used as a mathematical model
to predict the evolution of the envelope in space. The
reduction in the BBM equation’s spatial NLS equation
is expressed using Eq. 2 (Slunyaev et al., 2015).

A +ifA, +7|4 4=0, (2)

where, 4 express the envelope amplitude,

. . - . AT .
dispersive coefficient ﬂ:—(2wp+7]/p‘, nonlinear

. . . k
coefficient y:w[—

2 .
p—lim]/p with p:(l+2kw)/(l+kz)

through the multiple scale method (Halfiani et al.,
2017). Eq. (2) is obtained by applying the fast to slow
variable transformation, where 6=(kx—wt) as fast
variable and slow variable; &= g%y, r=¢(t-x/p),

a(x,t)=¢4(¢.7). Independent variables ¢ and ¢
express different meanings for different problems.

In the case of dispersive waves, £ describes spatial
variables (space) and ¢ represents the time variable.

Spatial NLS is appropriate for problems involving
wave signals as the initial signal on the wave marker
to describe space propagation. The NLS equation
has numerous solutions that describe various
phenomena. Soliton on Finite Background (SFB) is
one of many NLS exact solutions that can describe
extreme wave events in a hydrodynamics laboratory
(Karjanto et al., 2007).

SFB with displaced variables

The SFB solution is a non-linear interaction of
an amplitude monochromatic signal r, - roe*"mzf,
which is disturbed by a modulating wave with a
small K wavenumber interval and results in an

instability that increases exponentially with the rate
o(x)=xy2r; py- p’x* . A signal of this type is known
as a Benjamin Feir (BF) signal (Benjamin and Feir,

1967; Karjanto et al., 2011). The SFB wave signal was
chosen because it can be generated with moderate

amplitude on the wavemaker. While the other
solutions, Ma breather soliton (Mahato et al, 2021),
Akhmediev breather soliton (Gonzéalez-Gaxiola and
Biswas, 2018) and the rational solution, all solutions
describe the finite background wave type, they are
not suitable as wavemaker inputs in practice. The Ma
soliton wave signal cannot be used because it requires
a maximum amplitude as input to the wavemaker,
and the rational solution is difficult to use because
the rational wave signal has an infinite modulation
period, or it is not periodic with respect to space or
time (Karjanto, 2006). The SFB solution to the spatial
NLS, using Eq. 3.

A(g’r):ASFB (577)"067[”{59 (3)
Where,

(\32 - l)cosh(a(v)§)+

\ 1—‘3—22 cos(vr)—i&\/2—stinh(a(v)g)

n2

cosh(o‘(v)é‘)f\/lf‘écos(vr)

Agrp (g,r)z

and Vv states the modulation
O'(V)=V\/W and Q:V/(rod}?/ﬁ).

Displaced phase-amplitude variables are the
results of the transformation of SFB variables that
were originally in real form into complex forms (van
Groesen et al., 2006). Its purpose is to investigate
changes in amplitude in complex planes with phase
thatis solely dependent on position. This NLS solution
is derived based on variational formula depends on
phase ¢. With (f,T) =(0,0) as the maximum position
and time (Fig. 1).

frequency,

As a result of the change in phase with respect
to position, the wavelength of the carrier waves
from the wave group changes, and this becomes a
driving force towards extreme waves. SFB form with
displaced phase-amplitude variables is given using
Eq. 4.

A(E,7)=4,(E)F(&.7), (4)
F(f,r):G(gg,r)e'”’(‘f’r)—l, ¢(§,T) as a

where,
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Fig. 2: Argand diagram SFB for ( ,70;];) =(0.2;0.9186); (a) =1 and (b) 7 =1.3 (Fadhiliani et al., 2020)

replacement phase, and G(¢7)as a replacement

amplitude.

The phase singularity phenomenon can be
proven by transforming the SFB variable into a
complex form and presenting the results in an
Argand diagram. When the modulation frequency is
in the interval [0,\/3/—2], the phenomenon of phase
singularity occurs. This interval is represented by
a straight line that passes through the origin twice
(Fig. 2a). Meanwhile, for waves with modulation
frequencies in the modulation instability (O,ﬁ)
interval but not in the phase singularity interval, the
straight line on the Argand diagram passes through
the origin only once (Fig. 2b). A significant increase
in amplitude is caused by modulation instability,
which is a mechanism for extreme wave and phase
singularity phenomena.
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Hamiltonian formula

In Lagrangian form, the NLS equation is a dynamic
system. The integral of the equation contains a
large number of quantities. One of the quantities
in question is Hamiltonian, but there is also wave
energy, mass, or wave power in optics, as well as a
conserved quantity known as momentum (linear). The
equations for wave-ship interactions are based on the
Lagrangian variational principle, which results in the
combined system being formulated as a Hamiltonian
system (van Groesen et al., 2017). Because it contains
potential energy and proves singularity for finite time
in the NLS equation, the Hamiltonian plays a role in
regulating phase amplitude dynamics.

The Hamiltonian is derived from the Lagragian
according to the NLS equation which satisfies the
evolution of the BBM wave envelope. The exact solution
from NLS was chosen, namely SFB because it is able to



explain the dynamics of wave propagation that have
modulation instability and is suitable for input signals to
wavemakers in the laboratory. The SFB transformation
uses displaced variables so that they can be interpreted
geometrically, and these variables are also used in
Hamiltonian. The Hamiltonian for NLS, using Eq. 5.

H(A):wa(—;ﬂ

0.4

2+l7A4jdr, (5)

so that the Hamiltonian transformation r7(G,¢)
is obtained which contains the displaced phase-
amplitude variable using Eq. 6.

T/2

H(G7¢):J.7T/2
—5Ph )+ .

2 dr.
+%7}54(G(G—2cos¢)+1)2

The Hamiltonian equation H(G,4) containing
the displaced phase-amplitude variable begins with

Nonlinear Schrodinger Soliton on Finite Background

!

displaced phase-amplitude
variables

J

Hamiltonian H(A) Hamiltonian H(G, ¢)

Fig. 3. Schematic diagram of methods

the spatial NLS equation and is not time dependent.
Because the Hamiltonian for this system is not time
dependent, Hamiltonian represents total energy as
the sum of kinetic and potential energies and that it is
independent of time (Akhmediev et al., 1997; Eisberg
and Resnick, 1985). The total energy is conserved
and is the sum of the kinetic and potential energies.
Hamiltonian provides a phase-space integrated
solution that is good for equations of motion and can
also be interpreted geometrically (Karjanto, 2006).

The Hamiltonian function is used to investigate
the distribution of BBM wave energy during its
propagation. Because it contains potential energy,
the Hamiltonian plays a role in regulating phase
amplitude dynamics and also in proving singularity
at finite time in the NLS-BBM equation. Previously,
the Hamiltonian form H(G,¢) containing displaced
phase-amplitude variables was obtained. Because
the Hamiltonian for this system does not depend on
time, it will be equal to the mechanical energy or total
energy, which is the sum of the kinetic and potential
energies. The variables and parameters considered
are non-dimensional, so the presentation of figures
does not use units.

The results for normalized conditions are
presented visually in Fig. 4. The modulation
frequency is #=+/14 in the interval of modulation
instability, and other parameters are 1. The red
curve in Fig. 4 represents potential energy, the green
curve represents kinetic energy, and the blue curve
represents the Hamiltonian. It was found that the
curve has symmetry with respect to position as shown

(a)

(b)

Fig. 4: (a) Energy distribution and (b) Hamiltonian’s curve for normalized (7, 8,7,7) = (LL1, \f14)
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Fig. 5 : Energy distribution (left column) and Hamiltonian’s curve (right column) for (70;];) = (0-2;09186); (@@)-(b) ¥ =05,(c)—(d) V =

0.7,and (e)—(f) V = 1

in the graph of the envelope (Fig. 1). The resulting
energy H has the same value on the negative and
positive sides of the variable of position in space é’
. The shape of the symmetry is due to the symmetry
envelope generated by the normalized frequency.
This is an early sign that the distribution of wave
energy in its propagation affects the amplitude and
phase angle of the wave.

Fig. 5 contains the energy distribution and
Hamiltonian curve for the modulating frequency at
interval of the phase singularity phenomenon, it is
0<v <+/3/2 . In this frequency group, the curve also
has a symmetrical shape with respect to position and
has an optimum value when £ = 0 according to the
initial assumption. For modulation frequency 7 =0.5
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and §=0.7, kinetic energy has a larger portion than
potential energy, both are almost the same when the
modulation frequency v =1.

The energy distribution and Hamiltonian curves
presented in Fig. 6 for the modulation frequency
are outside the phase singularity interval but in the
modulation instability interval, ie 0<v<+2. The
curve has a symmetrical shape with respect to position
and peak occurs when v. Potential energy has a larger
portion than kinetic energy when the modulation
frequency $=1.3 and ¥ =14, but is not greater than
the potential energy in the wave with less frequency.

Potential energy is energy related to position due
to the influence of gravity. When viewed physically in
the study of surface water waves, potential energy is
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Fig. 6 : Energy distribution (left column) and Hamiltonian’s curve (right column) for (fo;lg) = (0.2;0.9186);
(a)-(b) v =1.3and(c)—(d) 1.4
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related to the wave amplitude. On the other hand,
there is kinetic energy related to the wave motion to
reach a certain speed and physically related to the
steepness of the wave. Based on Figs. 5 and 6, the
largest potential energy and kinetic energy are in the
wave with the modulation frequency v =0.5 which is
the smallest modulation frequency in this study.

The wave amplitude for the modulating frequency

(b)
Fig. 7 : (a) Argand diagram and (b) envelope, for (fo;lg;ﬁ) = (0‘2;0-9186;().5)

7 =0.5 is shown by the envelope curve (Fig. 7). The
amplitude for that frequency has a greater value than
the wave amplitude at other modulating frequencies.
Meanwhile, the phase angle with the same modulation
frequency is shown through the Argand diagram (Fig.
7a) and is found to have a greater value than the phase
angle at other modulating frequencies (the envelope
curve and Argand diagrams for other frequencies can
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be seen in Figs. 1 and 2). Thus, it is obtained that the
amplitude will be smaller for the greater the modulation
frequency. Similarly, the phase angle will be smaller
for the greater the modulation frequency and the
greater the phase angle, the steeper the wave will be.
The generated wave (extreme) is a high wave and not
broken. The use of a smaller modulation frequency
seems to have to be decided with great consideration.
High waves are needed to test the durability of the
model ship in the test pool, but breaking waves should
be avoided because they can damage laboratory
facilities. More detailed observations are needed to see
how the energy distribution relates to other parameters.
They are wave number and initial amplitude in order to
determine the combination of parameters to be used in
order to obtain a wave with a maximum height and can
maintain its shape.

The distribution of energy in wave propagation
is studied to complete information about the wave
characteristics that will be used as the initial signal input
to the wavemaker. The characteristics of the waves that
have been obtained are used to decide whether certain
mathematical models in this case BBM are suitable to
be applied in the hydrodynamics laboratory in order to
obtain extreme waves or at least approach them with all
their limitations. This study simply computes some signal
input modulation frequency in wave generation. This is
for efficient use of the laboratory, avoiding the practice
of trial and error. Based on the information that has been
obtained previously, that the BBM wave experiences
modulation instability for the modulation frequency
at intervals of 0<v<+2 which causes amplitude
amplification. Then the phase singularity phenomenon
also appears in wave propagation which gives a significant
increase in amplitude for the modulation frequency
interval 0 <7 <+/3/2). It is interesting to see the
energy distribution of the BBM wave in the modulation
frequency interval. Singularities and energy distributions
can be described by the Hamiltonian. The Hamiltonian
used contains displaced-phase amplitude in a complex
plane with a phase that only depends on position, so that
the Hamiltonian will be equal to the total energy which is
the sum of the potential energy and kinetic energy. The
modulation frequency considered as an extreme wave
generator is v = 0.5, because the resulting amplitude is
quite high and the energy in the envelope is also quite
large. Hamiltonian curve is symmetrical with respect to
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position. The modulation frequency affects the amount
of energy that participates in wave propagation. The
smaller the modulation frequency, the greater the
potential energy and kinetic energy. Potential energy is
related to the amplitude and kinetic energy is related
to the steepness of the wave so that the amplitude
and steepness of the wave will be maximum for small
modulating frequencies. In practice, even if a wave with a
maximum amplitude is desired, the selection of a smaller
modulation frequency must be considered because it will
have an impact on the steepness of the resulting wave.
Other parameters, namely wave number and initial
amplitude, are limitations in this paper, so it can be a
concern to get closer to the goal of extreme waves in the
laboratory.
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