Document Type : ORIGINAL RESEARCH ARTICLE

Authors

Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran

Abstract

The flocculation of dissolved heavy metals is a process which has an important effect on decreasing the concentration of the colloidal elements during estuarine mixing of river water and sea or ocean water. During this important process, a large amount of colloidal elements change into particles in the form of flock and the dissolved loads decline. This study is performed to evaluate the mechanism of self-purification of heavy metals in Sardabroud's estuary. For this purpose, the effect of salinity (varying from 1 to 8.5‰) on the removal efficiency of colloidal metals (copper, zinc, lead, nickel and magnesium) by flocculation process during mixing of Sardabroud River water and the Caspian Sea water was explored. The flocculation rate of Ni (25%) > Zn (18.59%) > Cu (16.67%) > Mn(5.83%) > Pb(4.86%)  indicates that lead and manganese have relatively conservative behavior but nickel, zinc and copper have non-conservative behavior during Sardabroud River’s estuarine mixing. The highest removal efficiencies were obtained between salinities of 1 to 2.5%. Due to flocculation process, annual discharge of dissolved zinc, copper, lead, manganese and nickel release into the Caspian Sea via Sardabroud River would reduce from 44.30 to 36.06 ton/yr, 3.41 to 2.84 ton/yr, 10.22 to 9.7 ton/yr, 8.52 to 7.8 ton/yr and 3.41 to 2.56 ton/yr, respectively. Statistical analysis shows that the flocculation rate of Nickel is highly controlled by redox potential and dissolved oxygen. Moreover, it is found that total dissolved solid, salinity, electrical conductivity and potential of hydrogen do not have a significant influence in flocculation of studied metals.

Graphical Abstract

Role of estuarine natural flocculation process in removal of Cu, Mn, Ni, Pb and Zn

Highlights

  • The flocculation process provided a valuable nutrient resource for aquatic organisms by transforming dissolved pollutant metals into micro-nutrients.
  • The pollution loads which entered to the Caspian Sea from river were decreased under flocculation process.
  • The Sardabroud estuary redox potential and dissolved oxygen were two main factors which controlled removal efficiency of Ni via flocculation process.

Keywords

Main Subjects

 

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image