Document Type : REVIEW PAPER


1 Department of Chemistry, School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia

2 Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia


Crude oil continues to impact many nations as it is among the major sources of fuel.  Its role in making life in modern societies comfortable cannot be overemphasized as it is readily available and easy to use. Contamination resulting from its use in industries such as mining, transportation and petroleum especially soil contamination cannot be overlooked. Soil pollution resulting from oil contamination can be seen as being among the twenty-first-century vulnerabilities because if not well taken care of the consequences can be devastating. Soil contamination is of interest in most societies because it affects both the environment and humans. This review highlights common sources of soil pollution and their effects, oil waste disposal methods, soil remediation techniques that are well established and those still in their infancy. Such techniques include bioremediation such as phytoremediation and landfarming, where percent removal of contaminated soils was reported from 68% to 89 % in 40 days to 1 year, respectively; physical methods such as excavation and incineration (75-86% removal); chemical methods such as oxidation (48 % by Fenton process); and photocatalysis (67% using titanium dioxide). The choice of remediation in mining, transportation and petroleum industries depends on the urgency and hazardous effects of the pollutant. In Zambia, Mopani Copper Mines uses landfarming as a means to mitigate large amounts of soil contaminated with oil wastes, but the process is slow. In the proposed research, photocatalysis coupled with adsorption of oil on clay will be used to assess the effectiveness of this emerging technology to quicken the degradation of oil in soils. Clay will be incorporated with metal ions and with hydrophobic groups to enhance light absorption and oil-clay interaction, respectively. Photochemical remediation techniques for remediation of soils polluted with oil have attracted considerable interest as the processes are reported to enhance the degradation of oils in soil compared to the biological and physical methods. The extent of photo-degradation of oil waste will be evaluated using the Soxhlet technique by determining the percent residual oil. The importance of remediating contaminated soil in any nation cannot be overemphasized as consequences of not remediating this precious resource might be devastating. Since economic development through industrialization will continue, there is need to constantly improve on methods of mitigating the impact of wastes on the environment, especially in developing countries, where engineering of cheap, nontoxic materials for soil remediation is paramount.

Graphical Abstract

Remediation technologies for oil contaminated soil


  • Several methods of cleaning oil-contaminated soils include biological; physical and chemical methods. Of these methods, biological remediation is commonly being relatively cheap and naturally occurring;
  • Bioremediation is a common method of decontaminating soil polluted with oil. The process is slow because of inability for microorganisms to quickly break down long chain oil components;
  • An emerging mitigation method for cleaning up soil contaminated with oil is the application of adsorption coupled with photocatalysis;
  • Semiconductor adsorbents create radicals upon irradiation with sunlight. The radicals react with adsorbed oil breaking it into simpler molecules such as water and carbon dioxide;
  • The use of low cost adsorbents such as clay is particularly attractive for developing countries. Clay is abundant, non-toxic and can easily be doped with transition metal ions to absorb UV and visible light.


Main Subjects


This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit:

Citation Metrics & Captures

Google Scholar | Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.