Document Type : REVIEW PAPER

Authors

1 Department of Chemistry, School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia

2 Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Kitwe, Zambia

10.22034/gjesm.2021.3.09

Abstract

Crude oil continues to impact many nations as it is among the major sources of fuel.  Its role in making life in modern societies comfortable cannot be overemphasized as it is readily available and easy to use. Contamination resulting from its use in industries such as mining, transportation and petroleum especially soil contamination cannot be overlooked. Soil pollution resulting from oil contamination can be seen as being among the twenty-first-century vulnerabilities because if not well taken care of the consequences can be devastating. Soil contamination is of interest in most societies because it affects both the environment and humans. This review highlights common sources of soil pollution and their effects, oil waste disposal methods, soil remediation techniques that are well established and those still in their infancy. Such techniques include bioremediation such as phytoremediation and landfarming, where percent removal of contaminated soils was reported from 68% to 89 % in 40 days to 1 year, respectively; physical methods such as excavation and incineration (75-86% removal); chemical methods such as oxidation (48 % by Fenton process); and photocatalysis (67% using titanium dioxide). The choice of remediation in mining, transportation and petroleum industries depends on the urgency and hazardous effects of the pollutant. In Zambia, Mopani Copper Mines uses landfarming as a means to mitigate large amounts of soil contaminated with oil wastes, but the process is slow. In the proposed research, photocatalysis coupled with adsorption of oil on clay will be used to assess the effectiveness of this emerging technology to quicken the degradation of oil in soils. Clay will be incorporated with metal ions and with hydrophobic groups to enhance light absorption and oil-clay interaction, respectively. Photochemical remediation techniques for remediation of soils polluted with oil have attracted considerable interest as the processes are reported to enhance the degradation of oils in soil compared to the biological and physical methods. The extent of photo-degradation of oil waste will be evaluated using the Soxhlet technique by determining the percent residual oil. The importance of remediating contaminated soil in any nation cannot be overemphasized as consequences of not remediating this precious resource might be devastating. Since economic development through industrialization will continue, there is need to constantly improve on methods of mitigating the impact of wastes on the environment, especially in developing countries, where engineering of cheap, nontoxic materials for soil remediation is paramount.

==========================================================================================
COPYRIGHTS
©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.
==========================================================================================
 

Graphical Abstract

Remediation technologies for oil contaminated soil

Highlights

  • Several methods of cleaning oil-contaminated soils include biological; physical and chemical methods. Of these methods, biological remediation is commonly being relatively cheap and naturally occurring;
  • Bioremediation is a common method of decontaminating soil polluted with oil. The process is slow because of inability for microorganisms to quickly break down long chain oil components;
  • An emerging mitigation method for cleaning up soil contaminated with oil is the application of adsorption coupled with photocatalysis;
  • Semiconductor adsorbents create radicals upon irradiation with sunlight. The radicals react with adsorbed oil breaking it into simpler molecules such as water and carbon dioxide;
  • The use of low cost adsorbents such as clay is particularly attractive for developing countries. Clay is abundant, non-toxic and can easily be doped with transition metal ions to absorb UV and visible light.

Keywords

Main Subjects

Abdulsalam, S.; Bugaje, I.M.; Adefila, S.S.; Ibrahim, S., (2011). Comparison of biostimulation and bioaugmentation for remediation of soil contaminated with spent motor oil. Int. J. Environ. Sci. Tech., 8 (1): 187-194 (8 pages)

Abed, R.M.M.; Al-kharusi, S.; Al-hinai, M., (2015). Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int. Biodeter. Biodegrad., 98: 43–52 (10 pages).

Achugasim, D.; Osuji, L.; Ojinnaka, C., (2011). Use of activated persulfate in the removal of petroleum hydrocarbons from crude oil polluted soils. Res. J. Chem. Sci., 1(7): 57–67 (11 pages).

Adipah, S., (2018). Remediation of Petroleum Hydrocarbons Contaminated Soil by Fenton’s Oxidation. J. Environ. Sci. Pub. Health, 2(4): 168-178 (11 pages).

Adlane, B.; Xu, Z.; Xu, X.; Liang, L.; Han, J.; Qiu, G., (2020). Evaluation of the potential risks of heavy metal contamination in rice paddy soils around an abandoned Hg mine area in Southwest China. Acta Geochim., 39(1): 85-95 (11 pages)

Agamuthu, P.; Tan, Y.S.; Fauziah, S.H., (2013). Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environ. Sci., 18: 694–702 (9 pages).

Ahmad, A.A.; Muhammad, I.; Shah, T.; Kalwar, Q.; Zhang, J.; Liang, Z.; Mei, D.; Juanshan, Z.; Yan,P.; Zhi, D.X.; Rui-Jun, L., (2020). Remediation methods of crude oil contaminated soil. World. J. Agri. Soil. Sci., 4(3): (8 pages).

Akpoveta, V.O.; Osakwe, S.; Egharevba, F.; Medjor, W.O.; Asia, I.O.; Ize-Iyamu, O.K., (2012). Surfactant enhanced soil washing technique and its kinetics on the remediation of crude oil contaminated soil. Pac. J. Sci. Technol., 13(1): 443-456 (14 pages).

Ali, W.A., (2019). Biodegradation and phytotoxicity of crude oil hydrocarbons in an agricultural soil. Chil. J. Agric. Res., 79(2), (12 pages)

Allen, H.K.; Donato, J.; Wang, H.H.; Cloud-hansen, K.A.; Davies, J.; Handelsman, J., (2010). Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Micro., 8: 251-259 (9 pages).

Amin, M.M.; Hatamipour, M.S.; Momenbeik, F.; Mohammadi-moghadam, F., (2014). Soil remediation via bioventing, vapor extraction and transition regime between vapor extraction and bioventing. Int. J. Environ. Health Eng., 2(6): 2–7 (6 pages).

Anthony, E.J.; Wang, J., (2006). Pilot plant investigations of thermal remediation of tar-contaminated soil and oil-contaminated gravel. Fuel, 85(4): 443-450 (8 pages).

Ashraf, A.M.; Maah, M.J.; Yusoff, I., (2014). Soil Contamination, Risk Assessment and Remediation. Environmental Risk Assessment of Soil Contamination. Intech. Open. (55 pages).

Atlas, R.M.; Stoeckel, D.M.; Faith, S.A.; Minard-Smith, A.; Thorn, J.R.; Benotti, M.J., (2015). Oil Biodegradation and Oil-Degrading Microbial Populations in Marsh Sediments Impacted by Oil from the Deepwater Horizon Well Blowout. Environ. Sci. Technol., 49(14): 8356-8366 (11 pages).

Azubuike, C.C.; Chioma, B.C.; Okpokwasili, G.C., (2016). Bioremediation techniques – classification based on site of application: principle, advantages, limitations and prospects. World J. Microbiol. Biotechnol., 32(11): 1–18 (18 pages).

Ball, A.S.; Steward, R.J.; Schliephake, K., (2012). A review of the current options for the treatment and safe disposal of drill cuttings. Waste Manage. Res., 30(5): 457-473 (17 pages).

Banerjee, S.; Pillai, S.C.; Falaras, P.; O’Shea, K.E.; Byrne, J.A.; Dionysiou, D.D., (2014). New Insights into the Mechanism of Visible Light Photocatalysis. J. Phys. Chem. Lett., 5: 2543−2554 (12 pages).

Borowik, A.; Wyszkowska, J., (2018). Response of Avena sativa L. and the soil microbiota to the contamination of soil with Shell diesel oil. Plant soil Environ., 64(3): 102–107 (6 pages).

Brame, J.A.; Hong, S.W.; Lee, J.; Lee, S.H.; Alvarez, P.J.J., (2013). Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere, 90(8): 2315-2319 (5 pages).

Chen, C.; Feng, H.; Deng, Y., (2019). Re-evaluation of sulfate radical based-advanced oxidation processes (SR-AOPs) for treatment of raw municipal landfill leachate. Water Res., 153: 100-107 (8 pages).

Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y., (2016). Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem. Eng. J., 284: 582-598 (17 pages).

Chibwe, L.; Geier, M.C.; Nakamura, J.; Tanguay, R.L.; Aitken, M.D.; Simonich, S.L.M., (2015). Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity. Environ. Sci. Technol., 49(23): 13889-13898 (10 pages).

Clark, C.D.; De Bruyn, W.J.; Ting, J.; Scholle, W., (2007). Solution medium effects on the photochemical degradation of pyrene in water. J. Photochem.  Photobiol. A., 186(2–3): 342-348 (7 pages).

Collings, A.F.; Gwan, P.B.; Pintos, A.P.S., (2007). Soil Remediation Using High-Power Ultrasonics Soil Remediation Using High-Power. Sep. Sci. technol., 42(7): 1565–1574 (10 pages).

Cook, R.L.; Hesterberg, D., (2013). Comparison of Trees and Grasses for Rhizoremediation of Petroleum Hydrocarbons. Int. J. Phytoremediation, 15(9): 844-860 (17 pages).

Dadrasnia, A.; Agamuthu, P., (2014). Biostimulation and monitoring of diesel fuel polluted soil amended with biowaste. Pet. Sci. Technol., 32(23): 2822–2828 (7 pages).

Dadrasnia, A.; Agamuthu, P., (2013). Dynamics of diesel fuel degradation in contaminated soil using organic wastes. Int. J. Environ. Sci. Technol. 10, 769–778 (10 pages).

de Andrade Lima, L.R.P.; Bernardez, L.A.; dos Santos, M.G.; Souza, R.C., (2018). Remediation of Clay Soils Contaminated with Potentially Toxic Elements: The Santo Amaro Lead Smelter, Brazil, Case. Soil. Sediment. Contam., 27(7): 573–591 (19 pages).

Derudi, M.; Venturini, G.; Lombardi, G.; Nano, G.; Rota, R., (2007). Biodegradation combined with ozone for the remediation of contaminated soils. Eur. J. Soil Biol., 43(5–6): 297-303 (7 pages).

Deshmukh, K.; Kovářík, T.; Křenek, T.; Docheva, D.; Stich, T.; Pola, J., (2020). Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC Adv., 10: 33782 - 33835 (54 pages).

Devatha, C.P.; Vishal, A.V.; Rao, J.P.C., (2019). Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation. Appl. Water Sci., 9(4): 1-10 (10 pages).

Diphare, M.; Muzenda, E., (2014). Remediation of Oil Contaminated Soils: A review. Intl’ Conference on Chemical, Integrated Waste Management and Environmental Engineering. 180-184 (5 pages).

dos Santos, J.J.; Maranho, L.T., (2018). Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum. A review. J. Environ. Manage., 210: 104-113 (10 pages).

Effendi, A.J.; Wulandari, M.  (2019).The impact of ultrasonic power and time for the removal of Total Petroleum Hydrocarbon from low permeability contaminated soils Ultrasonic application in contaminated soil remediation. IOP Conf. Series: Earth and Environ. Sci., 314: 012005 (10 pages).

Effendi, A.J.; Aminati, T., (2019). Enhancing Bioremediation of Crude Oil Contaminated Soil by Combining with Photocatalytic Process Using Tio2 as Catalyst. Int. J. Geomate., 17(64): 100–107 (7 pages).

Emami, S.; Pourbabaei, A.A.; Alikhani, H.A., (2014). Interactive effect of nitrogen fertilizer and hydrocarbon pollution on soil biological indicators. Environ. Earth Sci., 72(9): 3513-3519 (7 pages).

Ershadi, L.; Ebadi, T.; Ershadi, V., (2011). Chemical oxidation of crude oil in oil contaminated soil by Fenton process using nano zero valent Iron. 2nd Int. Conf. Environ. Sci. Technol., 6, (3 pages).

Ezenne, G.I.; Nwoke, O.A.; Ezikpe, D.E.; Obalum, S.E.; Ugwuishiwu, B.O., (2014).  Use of poultry droppings for remediation of crude-oil-polluted soils: Effects of application rate on total and poly-aromatic hydrocarbon concentrations. Int. Biodeter. Biodegrad., 92: 57–65 (9 pages).

Falciglia, P.P.; Giustra, M.G.; Vagliasindi, F.G.A., (2011). Low-temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. J. Hazard. Mater., 185(1): 392-400 (9 pages).

Galus, M.; Kirischian, N.; Higgins, S.; Purdy, J.; Chow, J.; Rangaranjan, S.; Li, H.; Metcalfe, C.; Wilson, J.Y., (2013). Chronic, low concentration exposure to pharmaceuticals impacts multiple organ systems in zebrafish. Aquat. Toxicol., 132: 200–211 (12 pages).

Gao, S.; Liang, J.; Teng, T.; Zhang, M., (2019). Petroleum contamination evaluation and bacterial community distribution in a historic oilfield located in loess plateau in China. Appl. Soil Ecol., 136: 30-42 (13 pages).

Gitipour, S.; Narenjkar, K.; Farvash, E.S.; Asghari, H., (2014). Soil flushing of cresols contaminated soil: Application of nonionic and ionic surfactants under different pH and concentrations. J. Environ. Health. Sci. Eng., 12(129): 1–6 (6 pages).

Godoy-Faúndez, A.; Antizar-Ladislao, B.; Reyes-Bozo, L.; Camaño, A.; Sáez-Navarrete, C., (2008). Bioremediation of contaminated mixtures of desert mining soil and sawdust with fuel oil by aerated in-vessel composting in the Atacama Region (Chile). J. Hazard. Mater., 151(2–3): 649–657 (9 pages).

Goi, A.; Kulik, N.; Trapido, M., (2006). Combined chemical and biological treatment of oil contaminated soil. Chemosphere, 63(10): 1754-1763 (10 pages).

Grenni, P., (2011). Effects of pesticides and pharmaceuticals on soil and water bacterial communities. PhD Thesis.  University of Milano-Bicocca, 203: (210 pages).

Guarino, C.; Spada, V.; Sciarrillo, R., (2017). Assessment of three approaches of bioremediation (Natural Attenuation, Landfarming and Bioagumentation–Assistited Landfarming) for a petroleum hydrocarbon contaminated soil. Chemosphere170:10-16 (7 pages).

Guerra, A.B.; Oliveira, J.S.; Silva-Portela, R.C.B.; Araújo, W.; Carlos, A.C.; Vasconcelos, A.T.R.; Freitas, A.T.; Domingos, Y.S.; de Farias, M.F.; Fernandes, G.J.T.; Agnez-Lima, L.F., (2018). Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environ. Pollut., 235: 869-880 (12 pages).

Hadnadjev-Kostic, M.; Vulic, T.; Marinkovic-Neducin, R., (2014). Solar light induced rhodamine B degradation assisted by TiO2–Zn–Al LDH based photocatalysts, Adv. Powder Technol., 25(5): 1624-1633 (10 pages).

Hamzah, A.; Phan, C.; Yong, P.;Ridzuan, N.H.M., (2014). An Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Enhance the Bioremediation of Soil Artificially Polluted by Crude Oil. Soil Sediment   Contam., 23(7): 751-762 (12 pages).

Hansen, K. A., (2017). Physical spill countermeasures on water-response in fast currents. In Oil Spill Science and Technology, 2nd. Edition. 455-482 (28 pages).

Havugimana, E.; Bhople, B. S.; Kumar, A.; Byiringiro, E.; Mugabo, J. P.; Kumar, A., (2015). Soil pollution–major sources and types of soil pollutants. Environ. Sci. Eng., 11: 53-86 (34 pages).

Hernando, M.D.; Mezcua, M.; Fernández-Alba, A.R.; Barceló, D., (2006). Environmental risk assessment ofpharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2): 334–342 (9 pages).

Huang, Y.; Pan, H.; Wang, Q.; Ge, Y.; Liu, W.; Christie, P., (2019). Enrichment of the soil microbial community in the bioremediation of a petroleum-contaminated soil amended with rice straw or sawdust. Chemosphere, 224:265-271 (7 pages).

Javorská, H.; Tlustoš, P.; Komárek, M.; Leštan, D.; Kaliszová, R.; Száková, J., (2009). Effect of ozonation on polychlorinated biphenyl degradation and on soil physico-chemical properties. J. Hazard. Mater., 161(2-3): 1202–1207 (6 pages).

Jebeli, M.T.; Heidarzadeh, N.; Gitipour, S., (2019). Pollution potential of the wastes of used oil   treatment plants and their possible remediation techniques. Int. J. Environ. Sci. Technol., 16(1): 3565-3578 (14 pages).

Jernelöv, A., (2010). The Threats from Oil Spills: Now, Then, and in the Future. Ambio, 39(5-6): 353–366 (14 pages).

Jung, H.; Ahn, Y.; Choi, H.; Kim, I.S., (2005). Effects of in-situ ozonation on indigenous microorganisms in diesel contaminated soil: Survival and regrowth. Chemosphere, 61(7): 923-932 (10 pages).

Kamath, R.; Rentz, J.A.; Schnoor, J.L.; Alvarez, P.J.J., (2004). Phytoremediation of hydrocarbon-contaminated soils: Principles and applications. Stud. Surf. Sci. Catal., 151: 447-478 (32 pages).

Kapoor, D., (2015). Impact of pharmaceutical industries on environment, health and safety. J. Crit. Rev., 2: 25-30 (6 pages).

Karbassi, A.R.; Pazoki, M., (2015). Environmental qualitative assessment of rivers sediments. Global J. Environ. Sci. Manage., 1(2): 109–116 (8 pages).

Khan, F. I.; Husain, T.; Hejazi, R., (2004). An overview and analysis of site remediation technologies. J. Environ. Manage., 71(2): 95-122 (28 pages).

Khan, M.N.; Mobin, M.; Zahid, A..; Alamri, S. (2017). Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene, 1–5: 225-240 (16 pages).

Kim, A.W.; Vane, C.H.; Engelhart, S.E.; Kemp, A.C., (2018). PAH , PCB , TPH and Mercury in Surface Sediments of the Delaware River Estuary and Delmarva Peninsula , USA. Mar. Pollut. Bull., 129(2), 835–8459 (11 pages)

Koul, B.; Taak, P., (2018). Chemical Methods of Soil Remediation. In Biotechnological Strategies for Effective Remediation of Polluted Soils. Springer, Singapore.  77-84 (8 pages).

Lim, M.W.; Lau, E.V.; Poh, P.E., (2016). A comprehensive guide of remediation technologies for oil contaminated soil — Present works and future directions. Mar. Pollut. Bull., 109 (1): 14-45 (32 pages).

Li, J.; Song, X.; Hu, G.; Thring, R.W., (2013). Ultrasonic desorption of petroleum hydrocarbons from crude oil contaminated soils. J. Environ. Sci. Health A., 48(11): 1378 - 1389 (12 pages).

Li, Y.; Sallach, J.B.; Zhang, W.; Boyd, S.A.; Li, H., (2019). Insight into the distribution of pharmaceuticals in soil-water-plant systems. Water Res., 152:38-46 (9 pages).

Liu, J.; Zhang, G., (2014). Recent advances in synthesis and applications of clay-based photocatalysts: A review. Phys. Chem. Chem. Phys., 16(18): 8178-8192 (15 pages).

Liu, Q.; Li, Q.; Wang, N.; Liu, D.; Zan, L.; Chang, L.; Gou, X.; Wang, P., (2018). Bioremediation of petroleum-contaminated soil using aged refuse from landfills. Waste Manage., 77: 576-585 (10 pages).

Lombi, E.; Hamon, R.E., (2005). Remediation of Polluted Soils. Encyclopedia of Soils in the Environment, 4: 379-385 (7 pages).

Maila, M.P.; Cloete, T.E., (2004). Bioremediation of petroleum hydrocarbons through landfarming: Are simplicity and cost-effectiveness the only advantages? Rev. Environ. Sci.  Biotechnol., 3(4): 349-360 (12 pages).

McCarthy, K.; Walker, L.; Vigoren, L.; Bartel, J., (2004). Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg. Sci. Technol., 40(1–2): 31-39 (9 pages).

Merkl, N.; Schultze-Kraft, R.; Infante, C., (2005). Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water. Air. Soil Pollut., 165(1–4): 195-209 (15 pages).

Moon, D.H.; Park, J.W.; Koutsospyros, A.; Cheong, K.H.; Chang, Y.Y.; Baek, K.; Jo, R.; Park, J.H., (2016). Assessment of Soil Washing for Simultaneous Removal of Heavy Metals and Low-Level Petroleum Hydrocarbons Using Various Washing Solutions. Environ. Earth Sci., 75(10): 884 (20 pages).

Moreira, I.T.A.; Oliveira, O.M.C.; Triguis, J.A.; Queiroz, A.F.S.; Ferreira, S.L.C.; Martins, C.M.S.; Silva, A.C.M.; Falcão, B.A., (2013). Phytoremediation in mangrove sediments impacted by persistent total petroleum hydrocarbons (TPH’s) using Avicennia schaueriana. Mar. Pollut. Bull., 67(1–2): 130-136 (7 pages).

Morelli, B.; Hawkins, T.R; Niblick, B.; Henderson, A.D.; Golden, H.E.; Compton, J.E.; Cooter, E.J.; Bare, J.C., (2018). Critical Review of Eutrophication Models for Life Cycle Assessment. Environ. Sci. Technol., 52(17): 9562–9578 (17 pages).

Mosbech, A., (2002). Potential environmental impacts of oil spills in Greenland An assessment of information status and research needs. NERI Technical Report, 415: (122 pages).

Mosco, M.J.; Zytner, R.G., (2017). Large-scale bioventing degradation rates of petroleum hydrocarbons and determination of scale-up factors. Bioremediat. J., 21(3-4): 149-162 (14 pages).

Narayan, R., (2010). Titania: a material-based approach to oil spill remediation? Mater. Today., 13(9): 58–59 (2 pages).

Nedunuri, K.V.; Govindaraju, R.S.; Banks, M.K.; Schwab, A.P.; Chen, Z., (2000). Evaluation of Phytoremediation for Field-Scale Degradation of Total Petroleum Hydrocarbons. J. Environ. Eng., 126(6): 483-490 (8 pages).

New climate economy., (2014). Better Growth Better Climate. The New Climate Economy Report. Washington, DC 20002, USA, (72 pages).

Ogunkeyede, A.O., (2016).  Conventional and microwave pyrolysis remediation of crude oil contaminated soil. PhD Thesis, University of Nottingham. (223 pages).

Okonofua, E.S.; Babatola, J.O.; Ojuri, O.O.; Lasisi, K.H., (2020). Determination of suitable TPH remediation approach via MANOVA and inferential statistics assessment. Remed. J., 30(3): 75-87 (13 pages).

Park, E.; Zhan, H., (2003). Hydraulics of horizontal wells in fractured shallow aquifer systems. J. Hydrol., 281(1-2): 147–158 (12 pages).

Pashkevich, M.A., (2017). Classification and Environmental Impact of Mine Dumps. In Assessment, Restoration and Reclamation of Mining Influenced Soils. Academic Press. 1-32 (32 pages).

Paudyn, K.; Rutter, A.; Kerry Rowe, R.; Poland, J.S., (2008). Remediation of hydrocarbon contaminated soils in the Canadian Arctic by landfarming. Cold Reg. Sci. Technol., 53(1): 102-114 (13 pages).

Peng, S.; Zhou, Q.; Cai, Z.; Zhang, Z., (2009). Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. J. Hazard. Mater., 168(2–3): 1490-1496 (7 pages).

Pomati, F.; Orlandi, C.; Clerici, M.; Luciani, F.; Zuccato, E., (2008). Effects and interactions in an environmentally relevant mixture of pharmaceuticals. Toxicol. Sci., 102(1): 129–137 (8 pages).

Rajabi, H.; Sharifipour, M., (2019). Geotechnical properties of hydrocarbon-contaminated soils: a comprehensive review. Bull. Eng. Geol. Environ., 78(5): 3685-3717 (33 pages).

Reicosky, D., (2018). Managing soil health for sustainable agriculture Volume 1: Fundamentals. Burleigh Dodds Science Publishing. (352 pages).

Ren, J.; Song, X.; Ding, D., (2019). Sustainable remediation of diesel-contaminated soil by low temperature thermal treatment: Improved energy efficiency and soil reusability. Chemosphere, 241: 124952 (27 pages).

Rostami, S.; Azhdarpoor, A., (2019). The application of plant growth regulators to improve phytoremediation of contaminated soils: A review.  Chemosphere, 220: 818-827 (10 pages).

Roy, A.S.; Baruah, R.; Borah, M.; Singh, A.K.; Boruah, H.P.D.; Saikia, N.; Deka, M.; Dutta, N.; Bora, T.C., (2014). Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. Int. Biodeter. Biodegrad., 94: 79–89 (11 pages).

Ruley, J.A.; Amoding, A.; Tumuhairwe, J.B.; Basamba, T.A.; Opolot, E.; Oryem-Origa, H., (2020). Enhancing the Phytoremediation of Hydrocarbon-Contaminated Soils in the Sudd Wetlands, South Sudan, Using Organic Manure. Appl. Environ. Soil Sci., 2020: (8 pages).

Rushton, D.G.; Ghaly, A.E.; Martinell, K., (2007). Assessment of canadian regulations and remediation methods for diesel oil contaminated soils. Am. J. Appl. Sci., 4(7): 465-478 (14 pages).

Russo, L.; Rizzo, L.; Belgiorno, V., (2012). Ozone oxidation and aerobic biodegradation with spent mushroom compost for detoxification and benzo(a)pyrene removal from contaminated soil. Chemosphere, 87(6): 595-601 (7 pages).

Sethi, S.; Gupta, P., (2020). Soil Contamination: A Menace to Life. In Soil Contamination. IntechOpen. (23 pages).

Shen, Y.; Chen, X.; Wang, J.; Ge, X.; Chen, M., (2016). Oil sludge recycling by ash-catalyzed pyrolysis-reforming processes. Fuel, 182: 871–878 (8 pages).

Sharma, S., (2012). Bioremediation: Features, Strategies and applications. Asian J. Pharm. Life Sci. 2: 202-213 (12 pages).

Shrestha, R.A.; Pham, T.D.; Sillanpää, M., (2009). Effect of ultrasound on removal of persistent organic pollutants (POPs) from different types of soils. J. Hazard Mater.170(2-3): 871–875 (5 pages).

Singh, B.; Bhattacharya, A.; Channashettar, V.A.; Jeyaseelan, C.P.; Gupta, S.; Sarma, P.M.; Mandal, A.K.; Lal, B., (2012). Biodegradation of Oil Spill by Petroleum Refineries Using Consortia of Novel Bacterial Strains. Bull. Environ. Cont. Toxicol., 89(2): 257–262 (6 pages).

Sivakumar, D., (2015). Hexavalent chromium removal in a tannery industry wastewater using rice husk silica. Global J. Environ. Sci. Manage., 1(1): 27-40 (14 pages).

Soleimani, M.; Afyuni, M.; Hajabbasi, M.A.; Nourbakhsh, F.; Sabzalian, M.R.; Christensen, J.H., (2010). Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere, 81(9): 1084-1090 (7 pages).

Speight, J.G., (2018). Reaction Mechanisms in Environmental Engineering. Analysis and Prediction. 1st Edition. Butterworth-Heinemann. (456 pages).

Srivastava, M.; Srivastava, A.; Yadav, A.; Rawat, V., (2019). Source and Control of Hydrocarbon Pollution and its Effect on the Environment. Muharrem Ince and Olcay Kaplan Ince, IntechOpen, (22 pages).

Stamets, L.D.C., (2013). Best Mycorestoration Practices for Habitat Restoration of Small Land Parcels (Doctoral dissertation, Evergreen State College) (155 pages).

Su, C.; Jiang, L.; Zhang, W., (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environ Skep Crit., 3(2): 24-38 (15 pages).

Sutton, N.B.; Kalisz, M.; Krupanek, J.; Marek, J.; Grotenhuis, T.; Smidt, H.; de Weert, J.; Rijnaarts, H.H.M.;  van Gaans, P.; Keijzer, T., (2014). Geochemical and microbiological characteristics during in situ chemical oxidation and in situ bioremediation at a diesel contaminated site. Environ. Sci. Technol., 48(4): 2352-2360 (9 pages).

Szulc, A.; Ambrożewicz, D.; Sydow, M.; Ławniczak,Ł.; Piotrowska-Cyplik, A.; Marecik, R.; Chrzanowski, Ł.,  (2014). The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J. Environ. Manage. 132: 121–128 (8 pages).

Thomé, A.; Reginatto, C.; Cecchin, I.; Colla, L.M., (2014). Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. J. Environ. Eng., 140(11): 06014005-1- 06014005-6 (6 pages).

Valentine, D.L.; Kessler, J.D.; Redmond, M.C.; Mendes, S.D.; Heintz, M.B.; Farwell, C.; Hu, L.; Kinnaman, F.S.; Yvon-Lewis, S.; Du, M.; Chan, E.W.; Tigreros, F.G.; Villanueva, C.J., (2010). Propane respiration jump-starts microbial response to a deep oil spill. Science., 330(6001): 208-211 (4 pages).

van der Heul, R.M., (2009). Environmental Degradation of petroleum hydrocarbons. Utrecht University/IRAS. Presentation. (53 pages).

Varjani, S.J.; Rana, D.P.; Jain, A.K.; Bateja, S.; Upasani, V.N., (2015). Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int. Biodeterior. Biodegradation, 103: 116–124 (9 pages).

Vidonish, J.E.; Zygourakis, K.; Masiello, C.A.; Sabadell, G.; Alvarez, P.J.J., (2016). Thermal treatment of hydrocarbon-impacted soils : A review of technology innovation for sustainable remediation. Engineering. 2(4): 426–437 (12 pages).

Wang, S.; Xu, Y.; LinZ.; Zhang,J.; Norbu, N.; Liu, W., (2017). The harm of petroleum-polluted soil and its remediation research. AIP Conference Proceedings, 1864 (1), (9 pages)

Wang, C.C.; Li, J.R.; Lv, X.L.; Zhang, Y.Q.; Guo, G., (2014). Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci., 7: 2831-2867 (37 pages)

Xiang, Q.; Yu, J.; Wong, P.K., (2011). Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci., 357(1): 163–167 (5 pages).

Xu, X.; Liu, W.; Tian, S.; Wang, W.; Qi, Q.; Jiang, P., Gao, X.; Li, F.; Li, H.; Yu, H., (2018). Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions : A Perspective Analysis. Front. Microbiol., 9: 1–11 (11 pages).

Yakubu, M.B., (2007). Biological approach to oil spills remediation in the soil. Afr. J. Biotechnol., 6(24): 2735-2739 (5 pages).

Yang, Y.; Javed, H.; Zhang, D.; Li, D.; Kamath, R.; McVey, K.; Sra, K.; Alvarez, P.J.J., (2017). Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation. Front. Chem. Sci. Eng., 11(3): 387–394 (8 pages).

Yuvaraj, M.; Mahendran, P.P., (2020). Soil Pollution Causes and Mitigation Measures. Biotica Research Today, 2(7): 550–552 (3 pages).

Zamudio-pérez, E.; Bandala, E.R.; Fernandez, L.C.; Torres, L.G., (2013). Surfactant enhanced washing of soil contaminated with petroleum hydrocarbons and treatment of produced wastewaters using a biofilter. J. Environ. Plan. Manage.,1(2): 110-116 (7 pages).

Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L., (2020a). Bioremediation of co-contaminated soil with heavy metals and pesticides: influence factors, mechanisms and evaluation methods. Chem. Eng. J., 398: 125657 (19 pages).

Zhang, C.; Wu, D.; Ren, H., (2020b). Bioremediation of oil contaminated soil using agricultural wastes via microbial consortium. Sci. Rep., 10(1): 1-8 (8 pages).

Zhang, L.; Li, P.; Gong, Z.; Li, X., (2008). Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiOunder UV light. J. Hazard. Mater.,158 (2-3): 478–484 (7 pages).

Zhu, H.; Aitken, M.D., (2010). Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environ. Sci. Technol., 44(19): 7260-7265 (6 pages). 

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image