ORIGINAL RESEARCH PAPER

Using ecological niche modeling to determine avian richness hotspots

R. Mirzaei^{1,*}, M.R. Hemami², A. Esmaili Sari³, H.R. Rezaei⁴, A.T. Peterson⁵

¹Department of the Environment, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran

²Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran

³Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran

> ⁴Gorgan University of Agricultural and Natural Resources, Gorgan, Iran ⁵Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA

Received 1 November 2016; revised 31 January 2017; accepted 20 February 2017; available online 1 March 2017

ABSTRACT: Understanding distributions of wildlife species is a key step towards identifying biodiversity hotspots and designing effective conservation strategies. In this paper, the spatial pattern of diversity of birds in Golestan Province, Iran, was estimated. Ecological niche modeling was used to determine distributions of 144 bird species across the province using a maximum entropy algorithm. Richness maps across all birds, and separately for rare and threatened species, were prepared as approximations to hotspots. Results showed close similarity between hotspots for all birds and those for rare birds; hotspots were concentrated in the southern and especially the southwestern parts of the province. Hotspots for threatened birds tended more to the central and especially the western parts of the province, which include coastal habitats. Based on three criteria, it is clear that the western part is the most important area of the province in terms of bird faunas. Despite some shortcomings, hotspot analysis could be applied to guide conservation efforts and provide useful tool towards efficient conservation action.

KEYWORDS: Avifauna; Ecological niche, Golestan Province; Hotspots; Species distribution modeling; Threatened birds.

INTRODUCTION

Currently, protection of biodiversity is an important focus for scientists, decision makers, and the public, because biodiversity is a foundation of ecosystem function, providing the life-support system of the Earth (Walther *et al.*, 2011, Wu *et al.*, 2013, Xu *et al.*, 2016, Waters *et al.*, 2016). In recent years, areas with high biodiversity have been the focus of conservation efforts. An important part of conservation biology is concerned with identifying biodiversity hotspots, a concept first proposed by Mayer (1988), and now in broad use in various global, regional, and local efforts (Myers *et al.*, 2000, Schouten *et al.*, 2010, Wu *et al.*, 2013). Hotspots can be defined as areas with the highest species richness of all species (Myers *et al.*, 2000), or may focus on endemic species (Orme *et al.*, 2005), rare species (Grenyer *et al.*, 2006), or threatened species (Orme *et al.*, 2005, Grenyer *et al.*, 2006). Unfortunately, hotspots are often located in

 ^{*}Corresponding Author Email: *rmirzaei@kashanu.ac.ir* Tel.: +98 31 5591 3228 Fax: :+98 31 5591 3222

Note: Discussion period for this manuscript open until June 1, 2017 on GJESM website at the "Show Article".

areas highly affected by human activities (Brevik *et al.*, 2015), such that conservation planning must be balanced against human needs and priorities.

In recent years, biodiversity mapping has seen important advances (Rodríguez et al., 2007), in which known occurrences of species are used to estimate ecological niches, which in turn are used to estimate potential distributions of species. Assessing overlap of potential distributions with protected areas constitutes a key step in gap analysis to optimize protection of biodiversity. Considering financial limitations, protecting all biodiversity hotspots completely is generally impossible. Hence, assessing, analyzing, and comparing the importance of different biodiversity hotspots for conservation is essential to their protection. Analyzing the environmental and geographic extents of important biodiversity hotspots can offer a better understanding of their ecological characteristics (Hedo de Santiago et al., 2016, Ibáñez et al., 2016, Stavi et al., 2016). Understanding species' distributions and the environmental factors that shape them is of great importance in conservation planning (Gray et al., 2006) and particularly to identifying hotspots (Ko et al., 2009). To this end, models based on associations between species' presences and environmental variation are used (Koet al., 2009).

Early models were usually based on multivariate linear functions like linear/multiple regression and multiple discriminant analyses (Jose and Fernando, 1997). Such methods have limitations, which led to exploration of nonlinear responses and evolutionary computing approaches (Elith *et al.*, 2006). These models include genetic algorithms, ecological niche factor analysis, maximum entropy, and artificial neural networks (Ko *et al.*, 2009). These newer approaches provide ecologists with better tools for precise estimation of species' niches and distributions (Stockwell, 2007). These models are known as "ecological niche models," or "species distribution models" when the focus is on estimating the occupied distributional area of the species. The environmental variables used form a subset of the ecological niche dimensions of species (Peterson, 2001).

Avian diversity is under severe threat from humancaused habitat loss and fragmentation (Gaston *et al.*, 2003). Identification of high-value sites is critical to maintaining avian diversity, given that resources available for conservation are limited (Turner *et al.*, 2003). The emergence and ready availability of GIS and species distribution models has facilitated identification of biodiversity hotspots. This study aimed to explore application of these approaches to mapping biodiversity hotspots across Golestan Province, Iran, as a step towards optimal design of conservation areas.

MATERIALS AND METHODS

Golestan Province, with an area of 20,387 km², is located along the southeastern edge of the Caspian Sea, covering 1.3% of the surface area of Iran (36°25' to 38°8' N and 53°50' to 56°18' E) (Fig. 1). Golestan Province has Turkmenistan to the north; Khorasan Province to the east; Semnan Province to the south and southeast;

Fig. 1: Study area of Golestan Province, Iran, showing elevational variation across the region.

and Mazandaran Province, the Bay of Gorgan, and the Caspian Sea to the west. This province includes plains, foothills, and mountains, and the climate ranges from arid and semiarid to mild and mountainous; average annual rainfall is 450 mm, reaching <200 mm in the north (Mirzaei, 2013).

7510 occurrence points for 243 bird species from across Golestan and Mazandaran provinces (Mirzaei, 2013) were used. Presence data were collected as part of a project of bird atlasing for northern Iran in 2012 and 2013. Field surveys of species were conducted for several different studies over this time period. Transects were surveyed visually by multiple field teams at various times of the day. Georeferenced occurrence points were noted for all species identified. Species with > 12unique presence points were retained (Tognelli et al., 2011), leaving 144 species for analysis. Unfortunately, modeling several important parts of the avifauna of the province was not possible, as presence data were too few (e.g., Neophron percnopterus, Gypaetus barbatus). Initially, 29 variables were explored to summarize environmental variation across the province (Appendix 1). To avoid overfitting owing to highly dimensional environmental spaces, using multicollinearity analysis, this set was reduced to 15 variables for analysis (Chatterjee and Hadi, 2006).

Occurrence data for each species were divided into calibration (75%) and evaluation (25%) sets. Background points were chosen randomly from across the study area. Ten runs and 1000 iterations were selected, and the average of the 10 runs was used as the final map. This continuous map of suitability was changed to binary using a 90% presence threshold: the suitability value whereby 90% of occurrence records were included (hereafter referred to as 90% PT). To evaluate models, receiver operating characteristic (ROC) curves were used; ROC shows the classification efficiency of the model as the area under the ROC curve (AUC), independent of any particular threshold (Elith *et al.*, 2006).

Species richness was then summarized in terms of total species richness, threat, and rarity. Overall species richness was calculated as the simple sum of the individual binary maps. For rarity, species were classified into abundant (value 0), common (value 1), average (value 2), and rare (value 3). Nonnative species were given scores of 0. The third criterion was presence of threatened species, which we based on three criteria: IUCN, CITES, and national lists. IUCN near-threatened species got a score of 1, vulnerable species 2, and endangered species 3; species listed in Appendices1 and 2 of CITES got scores of 2 and 1, respectively. Finally, based on national criteria, protected and endangered species got scores 1 and 2, respectively. Final maps of threat and rarity were prepared as the weighted sums of individual binary maps.

RESULTS AND DISCUSSION

From the initial list of birds, 15 species were removed, as the predictions of their distributions were not robust (Fig. 2; AUC <0.75; Pearce and Ferrier, 2000, Elith, 2002, Pous *et al.*, 2011). These species were Common Swift, Alpine Swift, Tawny Pipit, Tree Pipit, Eurasian Golden Oriole, Winchat, House

Fig. 2: Frequency of AUC scores in ROC tests among species of birds in this study

Martin, Lesser Spotted Woodpecker, Alpine Chough, Eurasian Magpie, Eurasian Reed Warbler, Ortolan Bunting, Olivaceous Warbler, Eurasian Hobby, and Spotted Flycatcher. Hence, 129 species were included in our analyses (Appendix 2).

Species richness overall and richness of rare species had similar patterns (Fig. 3). Three distinct hotspots with highest species richness were identified in Golestan Province: a) the southern and southwestern parts of the province, which are covered by forested mountains; b) the north-central parts of the province that include the Alagol, Ajigol, and Almagol wetlands, as well as Soofikom wetland and neighboring areas; and c) the western part of the province, which includes Gomishan Wetland and surrounding areas. The spatial pattern of threatened bird richness was different, seeming to follow habitat ecotones. Three hotspots were recognizable in this map: a) scattered areas in the central part of the province, b) the eastern sector of the province, and c) the western part, which includes significant wetland areas.

Hotspots have been developed based on three criteria and two thresholds (Fig. 4). Overall richness hotspots were closely similar to maps of rarity hotspots, with hotspots concentrated in the southern and southwestern parts of the province. Hotspots for threatened birds were in the central and, especially, western parts of the province, which consist of coastal habitats. Based on all three criteria, it becomes clear that the western areas are the most important part of the province in terms of species richness.

Finally, the results for the three hotspot criteria were combined to identify grid cells that were most valuable according to all three criteria. For the 30% criterion, several distinct clusters were identified across the southern part of the province. For the more strict 20% criterion, smaller clusters were identified, largely in the southwestern sectors of the province (Fig. 5). It is important to establish how much the three hotspot criteria overlapped: at the 30% criterion, 6.0% of the study area was "hot" for two criteria, and 0.4% of the study area was "hot" for three criteria. For the 20% criterion, overlap between two criteria was also around 2%, but overlap among all three criteria was only 0.02%.

Over recent decades, great advances have been made in development of predictive models of geographic and environmental distribution of species, rendering them useful tools for various applications (Rodríguez *et al.*, 2007). Using presence and absence data in ecology has been controversial. Some studies suggest that models that rely on presence data only make better predictions than those that also consider absence data (Ko *et al.*,

Fig. 3: Species richness of birds of Golestan Province, viewed in terms of total species richness, rare species richness, and threatened species richness

2009). One possible reason is that presence of a species in the area can be confirmed, but confirming absence of a species in the area can be quite complicated because identifying biological absence is not simple

or straightforward. An important caution regarding choice of environmental variables in these exercises is their relation to the specific requirements of the species in question. If environmental variables are not those that constrain the habitat requirements of the species, model predictions will fail.

For example, the Magpie is an abundant species in Golestan Province, ostensibly with sufficient presence points for modeling, yet the model's efficiency in determining the distribution of the species was not satisfactory. One probable reason is that the environmental variables employed do not represent key predictors for this species. Further experimentation to identify appropriate environmental variables would

Fig. 5: Map of three hotspot criteria in Golestan Province; combined colors range from black (all three hotspot criteria fulfilled) to gray (only one of three hotspot criteria fulfilled). Left side is 30% criterion view, right side is 20% criterion view

Fig. 4: Biodiversity hotspots for 129 bird species of Golestan Province, including the top 20% (red) and 30% (pink) of species richness

be necessary to be able to include this and other species in our analyses. Despite numerous studies (Liu *et al.*, 2005, Jimenez-Valverde and Lobo, 2007, Pineda and Lobo, 2009), no agreement exists regarding the best method for choosing the threshold to change the continuous raw model outputs into binary maps (presence and absence). Most recent efforts have based threshold choice on omission only, but have allowed for some error (termed *E*) in the match between occurrence data (Urbina-Cardona and Loyola, 2008, Brito *et al.*, 2009, Raes *et al.*, 2009). More detailed discussion of these points is provided by Peterson *et al.* (2011).

The validity of every ecological niche modeling exercise depends upon the modeling methods, the quality and comprehensiveness of the occurrence data, and the quality and appropriateness of the environmental layers used as predictors in the model (Ron, 2005). Although the data used in this study are the best and most comprehensive information available for Iranian wildlife that have been collected on a regional or provincial level, they are by no means bereft of errors. Basically, one of the most important problems in such models is bias in sampling of species across geographic or environmental gradients (Barry and Elith, 2006). Such bias means that modeled relationships may be determined more by patterns in the sampling than by the physiology of the species; such problems will lead to spatial errors (Barry and Elith, 2006).

The dataset includes two main biases: a) temporal bias, as the field activities did not cover the whole year, and rather were confined to April through August, thus they lack information on year-round distributions. Even sampling from all seasons may have information gaps, so data from several consecutive years are better, thus, that enough information can be gathered to permit modeling scarce species. b) Spatial bias, related to sampling areas is also important: although we tried to conduct our field research in a systematic manner, and they were largely successful, field research is never completely free of error and bias. The most important source of spatial bias lies in access to different parts of the province, a factor that depends critically on roads. By necessity, our sampling was concentrated in areas close to roads (Kadmon et al., 2003). Some measures were taken to reduce influence of this bias: "distance from road variable" was discarded from environmental variables; spatial resolution of our maps was set to 1 km²; and data from adjoining Mazandaran Province were added to the data to improve sampling of environments in our models.

This study treated only 129 bird species, and as such does not include all bird species of the province, being especially weak as regards winter resident species. Indeed, even some important species of the province, like Bearded Vulture, were omitted, as data were insufficient. As a result, one must keep in mind that our results cannot necessarily be generalized beyond these particular taxa. Many studies attest to the degree to which a single taxon is representative of overall biodiversity (Howard et al., 1998, Revers et al., 2000): many have come to the conclusion that single higher taxa will rarely suffice, although some studies have had more promising results (Pinto et al., 2008). Hence, some caution is necessary in interpreting our results on the bird fauna of Golestan: they may not be appropriate substitutes for other groups, like mammals, reptiles, amphibians, plants, or invertebrates.

CONCLUSION

Analysis of hotspots for the birds of Golestan Province, as best areas in terms of biodiversity, was conducted using species distribution modeling and ecological niche modeling approaches. The results indicated higher diversity of birds in the southern areas of the province, which were covered by forested lands. To get better results, it is necessary to complement this information with information on other animals, such as mammals, reptiles, and amphibians, in future research. It is also necessary to prepare and integrate hotspots according to various scenarios and methods, so that results are closer to reality. Despite shortcomings, species distribution models have become important tools in conservation biology, as they provide better possibilities for estimating the real distributions of species compared to the previous distribution range maps. Thus, using distributional models improve information available to guide future conservation initiatives in Iran.

ACKNOWLEDGMENTS

Authors are grateful to Mr. Ghaemi, Mr. Shakiba, Mr. Hoseini, Mr. Hashemi, Mr. Cheraghi, Mr. Roshanian and Mr. Orschi, for their help during the fieldwork and data processing of the study performance.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

ABBREVIATIONS

AUC	Area under the curve
CITES	Convention on International Trade in Endangered Species of Wild Fauna and Flora
IUCN	International Union for Conservation of Nature
km^2	Square kilometer
Max.	Maximum
Min.	Minimum
mm	Millimeter
NDVI	Normalized difference vegetation index
PT	Presence threshold
ROC	Receiver operating characteristic

REFERENCES

- Barry, S., Elith, J., (2006). Error and uncertainty in habitat models. J. Appl. Ecol., 43: 13-423 (410 pages).
- Brevik, E.C., Cerdà, A.; Mataix-Solera, J.; Pereg, L.; Quinton, J.N.; Six, J.; Van Oost, K., (2015). The interdisciplinary nature of soil. Soil., 1: 117-129 (13 pages).
- Brito, J.C.; Acosta, A.L.; A Ivares, F.; Cuzin, F., (2009). Biogeography and conservation of taxa from remote regions: An application of ecological-niche based models and GIS to North-African Canids. Biol. Conserv.,142: 3020-3029 (10 pages).
- Chatterjee, S.; Hadi, A., (2006). Regression analysis by example. John Wiley and Sons, New York, (**416 pages**).
- Elith, J., (2002). Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In: Ferson S,Burgman M (eds) Quantitative methods for conservation biology, Springer,New York, pp 39-58 (20 pages).
- Elith, J.; Graham, C.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; Li, J.; Lohmann, L.G.; Loiselle, B.A.; Manin, G.; Moritz, C.; Nakamura, M.; Nakazawa, Y.; Overton, J.M.C.; Peterson, A.T.; Phillips, S.J.; Richardson, K.S.; Scachetti-Prereira, R.; Schapire, R.E.; Sobero'n, J.; Williams, S.; Wisz, M.S.; Zimmermann, N.E. ,(2006). Novel methods improve prediction of species distributions from occurrence data. Ecography., 29: 129-151 (23 pages).
- Gaston, K.J.; Blackburn, T.M.; Goldewijk, K.K., (2003). Habitat conversion and global avian biodiversity loss. Proc. R. Soc. B., 270: 1293-1300 (7 pages).
- Giovanelli, J.G.R.; De Siqueira, M.F.; Haddad, C.F.B.; Alexandrino, J., (2010). Modeling a spatially restricted distribution in the Neotropics: How the size of calibration area affects the performance of five presence-only methods. Ecol. Model., 221: 215-224 (10 pages).
- Gray, D.; Scarsbrook, M.P.; Harding, J.S., (2006). Spatial biodiversity patterns in a large New Zealand braided river. N. Z. J. Mar. Freshwater Res., 40: 631-642 (12 pages).
- Grenyer, R.; Orme, C.D.L.; Jackson, S.F.; Thomas, G.H.; Davies, R.G.; Davies, T.J.; Jones, K.E.; Olson, V.A.; Ridgely, R.S.; Rasmussen, P.C.; Ding, T.S.; Bennett, P.M.; Blackburn, T.M.; Gaston, K.J.; Gittleman, J.L.; Owens, I.P.F., (2006). Global distribution and conservation of rare and threatened vertebrates.

Nature., 444: 93-96 (4 pages).

- Hedo de Santiago, J.; Lucas-Borja, M.E.; Wic-Baena, C.; Andrés-Abellán, M.; de lasHeras, J., (2016). Effects of thinning and induced drought on microbiological soil properties and plant species diversity at dry and semiarid locations. Land Degrad. Dev., 27(4): 1151-1162 (**12 pages**).
- Howard, P.C.; Viskanic, P.; Davenport, T.R.B.; Baltzer, M.; Dickinson, C.J.; Lwanga, J.S.; Matthews, R.E.; Balmford, A., (1998). Complementarity and the use of indicator groups for reserve selection in Uganda.Nature., 394: 472-475 (3 pages).
- Ibáñez, J.J.; Pérez-Gómez, R.; Brevik, E.C.; Cerdà, A., (2016). Islands of biogeodiversity in arid lands on a polygons map study: Detecting scale invariance patterns from natural resources maps. Sci. Total Environ., 573: 1638-1647 (10 pages).
- Jime'nez-Valverde, A.; Lobo, J.M., (2007). Threshold criteria for conversion of probability of species presence to either–or presence–absence. Acta Oecol., 31: 361-369 (9 pages).
- Jose, M.P.; Fernando, T., (1997). Prediction of functional characteristics of ecosystem: a comparison of artificial neural networks and regression models. Ecol. Model., 98:173-186 (14 pages).
- Kadmon, R.; Farber, O.; Danin, A., (2003). A systematic analysis of factors affecting the performance of climatic envelope models. Ecol. Appl., 13:853-867 (15 pages).
- Ko, C.Y.; Lin, R.S.; Ding, T.S.; Hsieh, C.H.; Lee, P.F., (2009). Identifying biodiversity hotspots by predictive models: A case study using Taiwan's endemic bird species. Zool. Stud., 48: 418-431(14 pages).
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G., (2005). Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28: 385-393 (9 pages).
- Mirzaei, R., (2013). Determination of suitable areas for the conservation of birds based on spatial distribution of environmental threats and species diversity in Golestan Province. Dissertation, Tarbiat Modares University publication, (127 pages).
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J., (2000). Biodiversity hotspots for conservation priorities. Nature, 403: 853-858 (6 pages).
- Orme, C.D.L.; Davies, R.G.; Burgess, M.; Eigenbrod, F.; Pickup, N.; Olson, V.A.; Webster, A.J.; Ding, T.S.; Rasmussen, P.C.; Ridgely, R.S.; Stattersfield, A.J.; Bennett, P.M.; Blackburn, T.M.; Gaston, K.J.; Owens, I.P.F., (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436: 1016-1019 (4 pages).
- Pearce, J.; Ferrier, S., (2000). Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model., 133: 225-245 (21 pages).
- Peterson, A.T., (2001). Predicting species' geographic distributions based on ecological niche modeling. The Condor., 103: 599–605 (7 pages).
- Peterson, A.T.; Soberon, J.; Pearson, R.G.; Anderson, R.P.; Martinez-Meyer, E.; Nakamura, M.; Araujo, M.A., (2011). Ecological niches and geographic distributions (MPB-49). Princeton University Press, Princeton, (328 pages).
- Pineda, E.; Lobo, J.M., (2009). Assessing the accuracy of species distribution models to predict amphibian species richness patterns. J. Anim. Ecol., 78: 182-190 (9 pages).
- Pinto, M.P.; FelizolaDiniz-Filho, J.A.; Bini, L.M.; Blamires, D.; Rangel, T.F., (2008). Biodiversity surrogate groups and conservation priority areas: birds of the Brazilian Cerrado. Divers. Distrib.,14: 78-86 (9 pages).

- Pous, P.D.; Beukema, W.; Weterings, M.; Dummer, I.; Geniez, P., (2011). Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: a preliminary assessment. Biodivers. Conserv., 20: 89-118 (**30 pages**).
- Raes, N.; Roos, M.C.; Slik, J.W.F.; Loon, E., TerSteege, H., (2009). Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography, 32: 180-192 (13 pages).
- Reyers, B., van Jaarsveld, A.S., Krüger, M., (2000). Complementarily as a biodiversity indicator strategy. Proc. R. Soc. B., 267: 505-513 (9 pages).
- Rodríguez, J.P.; Brotons, L.; Bustamante, J.; Seoane, J., (2007). The application of predictive modeling of species distribution to biodiversity conservation. Divers. Distrib., 13: 243-251(9 pages).
- Ron, S.R., (2005). Predicting the distribution of the amphibian pathogen *Batrachochytriumdendrobatidis* in the New World. Biotropica., 37: 209-221 (12 pages).
- Schouten, M.A.; Barendregt, A.; Verweij, P.A.; Kalkman, V.J.; Kleukers, R.M.J.C.; Lenders, H.J.R.; Siebel, H.N., (2010). Defining hotspots of characteristic species for multiple taxonomic groups in the Netherlands. Biodivers. Conserv., 19: 2517-2536 (20 pages).
- Stavi, I.; Rachmilevitch, S.; Yizhaq, H., (2016). Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. Land Degrad. Dev., doi:10.1002/ ldr.2469, (6 pages).
- Stockwell, D., (2007). Niche modeling. Chapman and Hall/CRC Press, Boca Raton, (199 pages).

- Tognelli, M.F.; Abba, A.M.; Bender, J.B.; Seitz, V.P., (2011). Assessing conservation priorities of xenarthrans in Argentina. Biodivers. Conserv., 20: 141-151 (11 pages).
- Wu, T.Y.; Walther, B.A.; Chen, Y.H.; Lin, R.S.; Lee, P.F., (2013). Hotspot analysis of Taiwanese breeding birds to determine gaps in the protected area network. Zool. Stud., 52: 1-29 (29 pages).
- Walther, B.A.; Larigauderie, A.; Loreau, M., (2011). Diversities: Biodiversity science integrating research and policy for human well-being. In: Brauch HG, Spring ÚO, Mesjasz C (eds.) Coping with global environmental change, disasters and security- threats, challenges, vulnerabilities and risks, Springer-Verlag, Berlin, pp 1235-1248 (14 pages).
- Waters, C.M.; Orgill, S.E.; Melville, G.J.; Toole, I.D.; Smith, W.J., (2016). Management of grazing intensity in the semi-arid rangelands of southern Australia: Effects on soil and biodiversity. Land Degrad. Dev., doi:10.1002/ldr.2602 (30 pages).
- Turner, W.; Spector, S., Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M., (2003). Remote sensing for biodiversity science and conservation. Trends Ecol. Evol., 18: 306-314 (8 pages).
- Urbina-Cardona, J.N.; Loyola, R.D., (2008). Applying niche-based models to predict endangered-hylid potential distributions: Are neotropical protected areas effective enough? Trop. Conserv. Sci., 1: 417- 445 (29 pages).
- Xu, L.; Cao, Y.; Li, W.; Cheng, Y.; Qin, T.; Zhou, Y.; Liu, F., (2016). Maintain spatial heterogeneity, maintain biodiversity: A seed bank study in a grazed alpine fen meadow. Land Degrad. Dev., doi:10.1002/ldr.2606 (30 pages).

Appendix1: Environmental	predictors	available	for	this study

No.	Variable	Data type	Scale/Resolution	Source of Data
1	Elevation	Continuous	90 m	USGS/SRTM
2	Aspect	Categorical	90 m	USGS/SRTM
3	Slope	Continuous	90 m	USGS/SRTM
4	NDVI	Continuous	250 m	http://modis.gsfc.nasa.gov/
5	Distance to agriculture area	Continuous	1:50000	Office of Natural Resources of Golestan
6	Distance to forest	Continuous	1:50000	Office of Natural Resources of Golestan
7	Distance to settlement area	Continuous	1:50000	Office of Natural Resources of Golestan
8	Distance to water body	Continuous	1:50000	Office of Natural Resources of Golestan
9	Distance to river	Continuous	1:50000	Office of Natural Resources of Golestan
10	Land use	Categorical	1:50000	Office of Natural Resources of Golestan
11	Isothermally	Continuous	1 km ²	URL:http://worldclim.org
12	Mean temperature of wettest quarter	Continuous	1 km ²	URL:http://worldclim.org
13	Mean temperature of driest quarter	Continuous	1 km ²	URL:http://worldclim.org
14	Precipitation seasonality	Continuous	1 km ²	URL:http://worldclim.org
15	Precipitation of warmest quarter	Continuous	1 km ²	URL:http://worldclim.org
16	Annual mean temperature	Continuous	1 km ²	URL:http://worldclim.org
17	Mean diurnal range	Continuous	1 km ²	URL:http://worldclim.org
18	Temperature seasonality	Continuous	1 km ²	URL:http://worldclim.org
19	Max.temperature of warmest month	Continuous	1 km ²	URL:http://worldclim.org
20	Min.temperature of coldest month	Continuous	1 km ²	URL:http://worldclim.org
21	Temperature annual range	Continuous	1 km ²	URL:http://worldclim.org
22	Mean temperature of warmest quarter	Continuous	1 km ²	URL:http://worldclim.org
23	Mean temperature of coldest quarter	Continuous	1 km ²	URL:http://worldclim.org
24	Annual precipitation	Continuous	1 km ²	URL:http://worldclim.org
25	Precipitation of wettest month	Continuous	1 km ²	URL:http://worldclim.org
26	Precipitation of driest month	Continuous	1 km ²	URL:http://worldclim.org
27	Precipitation of wettest quarter	Continuous	1 km ²	URL:http://worldclim.org
28	Precipitation of driest quarter	Continuous	1 km ²	URL:http://worldclim.org
29	Precipitation of coldest quarter	Continuous	1 km ²	URL:http://worldclim.org

*The first 15 variables were selected for modeling

No	English name	Scientific name	Presence	AUC
1	Green Sandpiper	Tringa ochropus	26	0.83
2	Green Shank	Tringa nebularia	14	0.94
3	Tufted Duck	Aythya fuligula	13	0.99
4	Great Egret	Casmerodius albus	13	0.89
5	Wren	Troglodytes troglodytes	41	0.85
6	Ruff	Philomachus pugnax	13	0.93
7	Cormorant	Phalacrocorax carbo	14	0.89
8	Nightingale	Luscinia megarhynchos	103	0.81
9	Quail	Coturnix cotrunix	44	0.87
10	Water Pipit	Anthus spinoletta	14	0.77
11	White-cheeked Tern	Sterna repressa	29	0.87
12	Common Tern	Sterna hirundo	14	0.94
13	Little Tern	Sterna albifrons	19	0.90
14	Common Swift	Apus apus	189	0.80
15	White-winged black Tern	Chlidonias leucopterus	18	0.98
16	Shikra	Accipiter badius	13	0.80
17	Levant Sparrowhawk	Accipiter brevipes	13	0.85
18	Blackbird	Turdus merula	257	0.85
19	Song Thrush	Turdus philomelos	25	0.77
20	Mistlethrush	Turdus viscivorus	54	0.93
21	Tawny Owl	Strix aluco	13	0.79
22	Little Owl	Athene noctua	26	0.84
23	Jay	Garrulus glandarius	59	0.82
24	Great Tit	Parus major	199	0.80
25	Coal Tit	Parus ater	95	0.88
26	Long-tailed Tit	Aegithalos caudatus	39	0.80
27	Blue Tit	Parus caeruleus	62	0.93
28	Sombre Tit	Parus lugubris	19	0.91
29	Stonechat	Saxicola torquata	89	0.85
30	Sky Lark	Alauda arvensis	28	0.82
31	Wood Lark	Lullula arborea	32	0.90
32	Shore Lark	Eremophila alpestris	19	0.79
33	Crested Lark	Galerida cristata	102	0.83
34	Pied Wheatear	Oenanthe pleschanka	16	0.79
35	Finsche's Wheatear	Oenanthe finschii	31	0.81
36	Black-eared Wheatear	Oenanthe hispanica	13	0.78
37	Calandra Lark	Melanocorypha calandra	24	0.79
38	Isabelline Wheatear	Oenanthe isabellina	43	0.78
39	Northern wheatear	Oenanthe oenanthe	59	0.80
40	Sand Martin	Riparia riparia	33	0.81
41	Crag Martin	Hirundo rupestris	25	0.88
42	Coot	Fulica atra	14	0.94
43	Moorhen	Gallinula chloropus	13	0.92
44	Black-winged Stilt	Himantopus himantopus	28	0.95
45	Purple Heron	Ardea purpurea	13	0.82
46	Grey Heron	Ardea cinerea	15	0.98
47	Tree Creeper	Certhia familiaris	13	0.79
48	Syrian Woodpecker	Dendrocopos syriacus	43	0.81
49	Great spotted Woodpecker	Picoides (Dendrocopos) major	37	0.84

Appendix 2: Occurrence records and AUC statistic in model creation for each species

R. Mirzaei et al.

No	English name	Scientific name	Presence	AUC
50	Green Woodpecker	Picus viridis	24	0.81
51	Black Francolin	Francolinus francolinus	13	0.89
52	Kestrel	Falco tinnunculus	129	0.79
53	Lesser Kestrel	Falco naumanni	36	0.92
54	Rufous Bush Robin	Cercotrichas galactotes	25	0.81
55	White Wagtail	Motacilla alba	171	0.77
56	Grey Wagtail	Motacilla cinerea	81	0.78
57	Citrine Wagtail	Motacilla citreola	45	0.95
58	Yellow Wagtail	Motacilla flava	13	0.88
59	Black Redstart	Phoenicurus ochruros	65	0.84
60	Common Redstart	Phoenicurus phoenicurus	77	0.88
61	Chough	Pyrrhocorax pyrrhocorax	56	0.80
62	Red-headed Bunting	Emberiza bruniceps	103	0.89
63	Black-headed Bunting	Emberiza melanocephala	64	0.82
64	Rock Bunting	Emberiza cia	152	0.84
65	Corn Bunting	Miliaria calandra	121	0.85
66	Blue-cheeked Bee-eater	Merops persicus	14	0.82
67	European Bee-eater	Merops apiaster	83	0.85
68	Dipper	Cinclus cinclus	24	0.84
69	Rose-colored Starling	Sturnus roseus	22	0.83
70	Long-legged Buzzard	Buteo rufinus	28	0.76
71	Common Buzzard	Buteo buteo	77	0.83
72	Starling	Sturnus vulgaris	36	0.76
73	European Roller	Coracias garrulus	170	0.85
74	Marsh Warbler	Acrocephalus palustris	14	0.92
75	Chiffchaff	Phylloscopus collybitus	49	0.77
76	Green Warbler	Phylloscopus nitidus	27	0.79
77	Menetries's Warbler	Sylvia mystacea	20	0.82
78	Blackcap	Sylvia atricapilla	69	0.82
79	Whitethroat	Sylvia communis	87	0.80
80	Lesser Whitethroat	Sylvia curruca	28	0.76
81	Clamorous reed Warbler	Acrocephalus stentoreus	13	0.94
82	Little ringed Plover	Charadrius dubius	18	0.84
83	Kentish Plover	Charadrius alexandrinus	24	0.95
84	Marsh Harrier	Circus aeruginosus	50	0.94
85	Red-backed Shrike	Lanius collurio	144	0.84
86	Great grey Shrike	Lanius excubitor	13	0.80
87	Isabelline Shrike	Lanius isabellinus	17	0.79
88	Crimson-winged Finch	Rhodopechys sanguinea	13	0.95
89	Red-fronted Serin	Serinus pusillus	39	0.88
90	Chaf Finch	Fringilla coelebs	278	0.82
91	Siskin	Carduelis spinus	18	0.78
92	Green Finch	Carduelis chloris	104	0.86
93	Linnet	Carduelis cannabina	92	0.83
94	Scarlet Rosefinch	Carpodacus erythrinus	86	0.80
95	Goldfinch	Carduelis carduelis	133	0.83
96	Hawfinch	Coccothraustes coccothraustes	13	0.77
97	Robin	Erithacus rubecula	53	0.84
98	Whie-throated Robin	Irania gutturalis	17	0.87
99	Peregrine Falcon	Falco peregrinus	13	0.77
100	Dunnock	Prunella modularis	18	0.79

No	English name	Scientific name	Presence	AUC
101	Rock Thrush	Monticola saxatilis	55	0.86
102	Golden Eagle	Aquila chrysaetos	19	0.77
103	Raven	Corvus corax	29	0.83
104	Red necked Phalarope	Phalaropus Lobatus	13	0.95
105	Greater Flamingo	Phoenicopterus ruber	13	0.98
106	Pheasant	Phasianus colchicus	52	0.80
107	Sparrowhawk	Accipiter nisus	13	0.77
108	Laughing Dove	Streptopelia senegalensis	19	0.77
109	Turtle Dove	Streptopelia turtur	14	0.87
110	Black-headed Gull	Larus ridibundus	13	0.96
111	Slender-billed Gull	Larus genei	17	0.93
112	Chukar	Alectoris chukar	63	0.81
113	Woodpigeon	Columba palumbus	56	0.89
114	Rock Dove	Columba livia	43	0.80
115	Great crested Grebe	Podiceps cristatus	13	0.96
116	Hooded Crow	Corvus corone	225	0.81
117	Eastern Rock Nuthatch	Sitta tephronata	28	0.78
118	Nuthatch	Sitta europaea	75	0.89
119	Western Rock Nuthatch	Sitta neumayer	29	0.81
120	Common Cuckoo	Cuculus canorus	73	0.76
121	House Sparrow	Passer domesticus	212	0.77
122	Tree Sparrow	Passer montanus	89	0.78
123	Spanish Sparrow	Passer hispaniolensis	16	0.84
124	Rock Sparrow	Petronia petronia	36	0.85
125	Curlew	Numenius arguata	13	0.93
126	Pied Kingfisher	Ceryle rudis	16	0.87
127	Red-breasted Flycatcher	Ficedula parva	38	0.78
128	Ноорое	Upupa epops	98	0.79
129	Collared Dove	Streptopelia decaocto	47	0.81
	The bel	low species omitted because of low A	UC	
130	Common Swift	Apus apus	21	0.65
131	Alpine Swift	Apus melba	12	0.54
132	Tawny Pipit	Anthus campestris	12	0.62
133	Tree Pipit	Anthus trivialis	16	0.60
134	Golden Oriol	Oriolus oriolus	20	0.64
135	Whinchat	Saxicola rubetra	17	0.59
136	House Martin	Delichon urbica	32	0.66
137	Lesser Spotted Woodpecker	Picoides (Dendrocopos) minor	13	0.62
138	Alpine Chough	Pyrrhocorax graculus	36	0.26
139	Magpie	Pica pica	176	0.72
140	Ortolan Bunting	Emberiza hortulana	12	0.64
141	Marsh Warbler	Acrocephalus palustris	12	0.56
142	Olivaceous Warbler	Hippolais pallida	28	0.65
143	Hobby	Falco subbuteo	26	0.63
144	Spotted Flycatcher	Muscicapa striata	37	0.69

AUTHOR (S) BIOSKETCHES

Mirzaei, R., Ph.D., Assistant Professor, Department of the Environment, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran. Email: *rmirzaei@kashanu.ac.ir*

Hemami, M.R., Ph.D., Associate Professor, Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran. Email: *mrhemami@gmail.com*

Esmaili Sari, A., Ph.D., Professor, Department of Environment, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran. Email: *esmaili@modares.ac.ir*

Rezaei, H.R., Ph.D., Assistant Professor, Department of Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. Email: *hamid.r.rezaei@gmail.com*

Peterson, A.T., Ph.D., Professor, Biodiversity Institute, University of Kansas, Lawrence, Kansas, USA. Email: town@ku.edu

COPYRIGHTS

Copyright for this article is retained by the author(s), with publication rights granted to the GJESM Journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).

HOW TO CITE THIS ARTICLE

Mirzaei, R.; Hemami, M.R.; Esmaili Sari, A.; Rezaei, H.R.; Peterson, A.T., (2017). Applying ecological niche modeling to determine avian richness hotspots. Global J. Environ. Sci. Manage., 3(2): 131-142.

DOI: 10.22034/gjesm.2017.03.02.002

url: http://gjesm.net/article_24061.html

