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ABSTRACT: Due to its abundance and also flexibility of cultivation conditions, Chlorella vulgaris 
microalgae is one of the most ideal options available for microalgae based biodiesel production. Since 
vulgaris cultivation for fuel production needs economic considerations to be taken, and in first place, 
the importance of providing biomass and lipid production costs, wide researches have been conducted 
in this field and this review study aims to spot the best condition for cultivation of this valuable specie 
by reviewing the whole literature. So far, researchers’ efforts show that the best condition for vulgaris 
cultivation is mixotrophic regime which is done in a bubble column photobioreactor. Glucose as carbonic 
source and nitrate as nitrogen source have the most efficacy among nutrition conditions. The best results 
are obtained when glucose and nitrate content are 20 and o.5 g/L respectively. Alkaline medium (pH 9 to 
10), non-continuous illumination, 5 to 7 Klux and a 200 mL/min aeration flow rate, were known to be the 
best physical conditions. The most vulgaris biomass amount produced was 3.43 g/L, and the best lipid 
productivity was measured 66.25 mg/L/day.
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INTRODUCTION
Clean energy supply has always been a challenge 

confronting humanity. Long before, fossil fuels were 
considered as major source of energy, but some 
reasons such as non-renewability, imminent finishing, 
pollution, several environmental issues and other 
harmful effects made man to look for other sources 
of energy (Gouveia and Oliveira, 2009; Ryan et 
al., 2006). Wind energy, geothermal energy, solar 
energy and biofuel are among the most important 
options proposed during the last century (Khan et 
al., 2009; Fischer et al., 2001). The biofuel has many 

unique capabilities that drew attention more than 
other sources (Erazoet et al., 2007; Golzary et al., 
2015). Production sources of biofuel consist of three 
categories; 1) first- generation fuel sources; food 
products such as palm oil, sunflower oil, oil seeds 
such as barley, bran, beets, beans, soybeans and so on, 
2) the second-generation fuel sources; fuel-containing 
cellulose, lignin, or pectin, for example, agricultural 
residues, 3) the third-generation is the fuel derived 
from microorganisms such as microalgae and protists 
(Campbell et al., 2011; Schenk et al., 2008; Fulton 
et al., 2004; Antolin et al., 2002). Microalgae due 
to fast growth and ability to cultivate on non-arable 
land, the use of non-potable water for growing them, 
independence from seasons, improved efficiency 
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of photosynthesis and high lipid content production, 
flexibility and the ability to modify the conditions of 
cultivation with the biotechnology techniques, seem 
to be very desirable (Chisti, 2007; Campbell, 1997; 
Chisti, 2008; Dalir et al., 2007). However, their 
application for fuel production on an industrial scale 
due to the low efficiency of commercially viable 
oil production is now offline (Benemann, 1997; 
Sheehan et al., 1998). All the efforts of researchers in 
recent years are for economizing on fuel production 
from microalgae. In the first place two parameters 
including microalgae growth and the produced lipid 
are taken into account (Cheng et al., 2010; Vicente 
et al., 2004). In this respect microalgae is divided 
into two categories: The first category has high lipid 
content but low cell growth, such as botryococcus 
braunii (Cheng et al., 2007; Cadenas et al., 1998 ) 
and the second one has a high growth rate but low 
lipid content, such as Chlorella vulgaris (Griffiths and 
Harrison, 2009). Raised Chlorella vulgaris species 
have attracted special attention. Chlorella vulgaris is a 
photosynthetic microorganisms and eukaryotic  from 
family of chlorellaceae (Ortiz Montoya et al., 2014). 
This organism is a unicellular green microalgae and has 
spherical cells with diameter of 2 to 10 micrometers, 
which has asexual reproduction in which, a mother 
cell reproduces 4 daughter cells, so that its growth rate 
is higher (doubling mass cell time is about 19 hours) 
(Yamamoto et al., 2004; Illman et al., 2000; Yamamoto 
et al., 2005). Rapid growth, easy and flexible terms 
of culture and resistance against interfering factors, 
are advantages that makes this microalga appropriate 
for use in the food industry, aquaculture, cosmetics, 
pharmaceutical, waste water treatment and the 
production of biofuel (Hultberg et al., 2014; Bunyakiat 
et al., 2006 ). Chlorella vulgaris lipid content in typical 
cultivation condition is about 20% (on dry basis). This 
amount cannot supply requirements of industrial fuel 
production but by adjusting the culture conditions 
which it can be raised to about 40-50% that can  be 
promising for fuel industrial production (Al-lwayzy 
et al., 2014; Scarsella et al., 2010; Al-Widyan et al., 
2002). In this study, the major effort was to review and 
propone the optimum condition for Chlorella vulgaris 
growth with the highest lipid content and also to find 
the effect of main factors on these parameters. This 
study has been carried out in the Caspian Faculty of 
Engineering, College of Engineering, University of 
Tehran, Rezvanshar, Guilan, Iran in 2016.

Metabolisms of Chlorella vulgaris growth
Microalgae Chlorella vulgaris metabolisms 

are categorized in 4 types, including autotrophic, 
heterotrophic, mixotrophic and photoheterotrophic. 
Characteristics of autotrophic microalgae metabolism 
include using inorganic carbon sources as CO2 
and bicarbonates and light as energy source for 
photosynthesis (Chenl and Celia, 1994; Demirbas, 
2009). This metabolism divided of two categories: 
open system and close systems. Autotrophic growth 
with open systems is the most common and cheapest 
way to produce biomass on a large scale which 
includes natural pools (such as lakes) and artificial 
pools (for example containers). The optimum depth 
of the pond should be between 15-50 cm so that 
light can reach the whole cultivation environment. 
In close system for the cultivation of microalgae, 
several types of photobioreactor, such as tubular, air 
lift, bubble column and photobioreactors are used 
(Safi et al., 2014; Pienkos and Darzinc, 2009; Posten, 
2009; Molina et al., 2001). Heterotrophic metabolism 
requires organic carbon as carbonic nutrient and energy 
in light absence, which its products are produced in 
closed photobioreactors (Veillette et al., 2012; Huppe 
and Turpin, 1994). Mixotrophic metabolism is done 
in the presence or absence of light, with organic and 
inorganic carbon sources (Chenl and Celia, 1994; 
Perez et al., 2011). Mixotrophic culture means that cell 
growth is not merely dependent on photosynthesis, 
light energy is no longer a limiting factor, therefore 
light and organic carbon source have a supporting role 
for microalgea (Andrews, 1968; Widjaja et al., 2009). 
Photoheterotrophic cultivation necessarily takes place 
in the presence of light and organic carbon source 
(Chenl and Celia, 1994). 

Comparing metabolisms
In autotrophic cultures using the open system, 

adjusting CO2 concentration and other parameters 
such as light intensity is difficult. Using close system 
(photobioreactors) leads to better management 
of culture conditions such as light intensity, pH, 
temperature and CO2 concentration, but the problem 
is the complexity of designing closed systems, low-
level illumination, high cost of sterilizing and not 
being economic for industrial applications (Gonzalez 
et al., 2012; Song and Shi, 2008; Floder et al., 2006). 
Although, heterotrophic compared to autotrophic will 
result in a higher growth rate but the main problem 
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is the high cost of organic carbon source and lack 
of all-time access to it, that limits its applicability in 
industrial scale (Martinez et al., 1991; Liang et al., 
2009; Ogawa and Aiba, 1981). The major benefit of 
mixotrophic metabolism is removing waste growth of 
cell mass duo to dark phase and also decreasing  the 
requirement of organic carbon for growth (De-Bashan 
et al., 2005; Gonzalez and Bashan, 2000). A major 
barrier to the use of microalgae for biofuel production 
is reducing the light intensity in dense environment 
of the culture, which can be solved using mixotrophic 
operations and the ability of microalgae to grow 
in presence of organic carbon in dark conditions 
(Pagnanelli et al., 2013). Studies also show that the 
best conditions for Chlorella vulgaris cultivation 
in order to attain the highest biomass and lipid 
productivity is achieved under mixotrophic regime 
(Scarsella et al., 2010).

Factors affecting the growth of the microalgae 
Chlorella vulgaris

Factors affecting the growth of microalgae include 
two categories: nutritional factors (chemical) and 
environmental factors (physical). Nutritional factors 
include the composition and amount of the chemical 
species in culture medium, the most important them 
being the source of carbon, nitrogen, phosphorus, 
silicon, metals such as iron, copper, zinc, vitamins, 
etc. The type and concentration of the carbon source 
and nitrogen source are very effective, so they are 
considered more important and many studies have 
been done in this area. Of course, there is another 
parameter that previously was not considered, but it is 
considerably effective, namely being the concentration 
of carbon and nitrogen source ratio (C/N) which 
has many effects on microalgae metabolism. The 
second, are the physical factors including cultivation 
environment pH, temperature, light intensity and the 
intensity of aeration to the system. In the following, 
we discuss the most important parameters (Faramarzi 
et al., 2010).

Carbon source 
Carbon, the most vital nutrient needed by 

microalgae, being the main structural component of 
them and also their energy source. If culture system 
is autotrophic, CO2 or bicarbonate compounds (such 
as sodium bicarbonate) are used as the only carbon 
source, while in heterotrophic culture, organic 

materials such as glucose, starch, sucrose, acetate, 
glycerol, etc play the role of carbon source and in the 
mixotrophic culture a combination of these twois used. 
For feeding CO2 to system, usually a CO2-enriched 
air flow with certain percentage of CO2 is used (such 
as flue gas stream). It is observed that the change 
of CO2 concentration from 4% to 8% and 16% has 
no significant effect on cell concentration (Wen and 
Chen, 2001; Xu et al., 2001; Ho et al., 2011; Spolaore 
et al., 2006; Hsieh and Wu, 2009; Pyle et al., 2008). 
Morais and Costa (2014) found that the concentration 
of CO2 in the medium should be between the value 
which results in the maximum rate of cell growth 
and the microalgae tolerance threshold. Montoya 
et al. (2014) implemented the Chlorella vulgaris 
cultivation in an autotrophic tubular photobioreactor, 
obtaining the highest biomass concentration and 
the maximum efficiency of lipid production, in air 
containing 8% CO2, as 6.8 g/L and 29.56 mg/L/day, 
respectively. They also found that the concentration 
of CO2 affected cellular growth to some extent, but it 
had no effect on the amount of total lipid. Kong et 
al. (2011) investigated the effect of different carbon 
sources including CO2, sodium bicarbonate, sodium 
acetate, glucose, sucrose and glycerin on the growth 
of vulgaris. Their results are shown in Fig. 1.

In Fig. 1, the control means CO2 concentration and 
OD parameter shown on the vertical axis is abbreviate 
of optical density and is a method to evaluate the 
growth of microalgae. According to growth curves 
obtained in mixotrophic conditions, the optimal 
carbon source for vulgaris is glucose which its OD 
curve is higher than others. In this experiment, 
after 6 days in cultivation environment, SEM (soil 
extract medium) with glucose concentration of 1 
g/L, maximum biomass concentration of 1.23 g/L, the 
maximum specific growth rate 1.22 1/day and biomass 
productivity 0.2 g/L/day were obtained. In case of 
lipid productivity, glucose with 17.3 mg/L/day had 
the highest yield too. In another experiment, Kong et 
al. (2011) changed glucose concentration from 1 to 
20 g/L and found that increasing the concentration of 
glucose (5 g / L <) may slightly increase the lag phase 
of cell growth, but after a short interruption, it enters 
logarithmic phase rapidly and in overall, increasing 
glucose concentration, increases biomass concentration 
and amount of lipid cells. Thus, in glucose concentration 
of 20 g/L, the biomass amount 2.24 g/L and lipid 
productivity 66.25 mg/L/day were obtained. Scarcella 



220

Optimal condition for Chlorella vulgaris

et al. (2010) reviewed the optimal growth conditions 
for vulgaris in bubble column photobioreactor under 
mixotrophic metabolism and they obtained the 
optimum concentration of glucose as 6 g/L.

Nitrogen source
In recent years, numerous research works have 

been performed in increasing the amount of vulgaris 
lipid cells which most of them has been conducted 
by focusing on adjustment of nutritional conditions 
of culture. limitation or lack of nitrogen, phosphate 
limitation, reducing silicon and the addition of iron 
were some of them (Rodolfi et al., 2009; Liu et 
al., 2008; Griffiths and Harrison, 2009; Yamane 
et al., 2001; Humphrey, 2004). However, the 
most researches have been performed on nitrogen 
concentration due to its vital role in regulating cell 
growth and metabolism of the lipid production. 
Kong et al. (2011) investigated different nitrogen 
sources for vulgaris including potassium nitrate, urea, 
ammonium sulfate, ammonium nitrate, peptone, meat 
extract and simultaneous effect of pH on the growth of 
the system under mixotrophic conditions that the best 
results were obtained for potassium nitrate and urea. 
Among potassium nitrate and urea, potassium nitrate 
indicated highest specific growth rate (0.87 1/day), 
biomass production (3.43 g/L), biomass productivity 
(0.57 g/L/day) and lipid productivity (47.1 g/L/day). 
But, due to lower price of urea, it was recognized to 
be the best nitrogen source. In another experiment, 
different concentrations of urea in range of 0-1 g/L 
were investigated. Results showed that concentrations 
greater than 0.5 g/L, although prolong lag phase, but 
make the logarithmic phase wider, leading to the most 
growth to be occurred. Totally, it became apparent 

that limiting the concentration of nitrogen leads to 
production of more lipids, but on the contrary, it lowers 
biomass concentration. Li et al. (2008) examined the 
concentration of sodium nitrate in the range 3-20 
mM and they achieved highest lipid productivity in 
5 mM concentration.  Jian-Ming et al. (2010) used 
KNO3 as nitrogen source and found that low amounts 
of nitrogen (0.2-3 mM) limits the cells growth, and 
increasing it (to 5 mM) enhances cell growth, as it 
can be seen in Fig. 2. The highest lipid productivity 
(40 mg/L/day) was obtained in 1 mM potassium 
nitrate concentration. Moreover, the amount of lipid 
productivity in presence of 5 mM KNO3 was obtained 
35 mg/L/day. Scarcella et al. (2010) investigated 
the optimal growing conditions for vulgaris in a 
bubble column photobioreactor under mixotrophic 
metabolism. They examined the role of nitrogen in 
two modes: in absence of nitrogen and nitrogen low 
concentration. In the low nitrogen concentration mode, 
the highest cell proliferation, biomass production and 
lipid production was observed.

 
 

Fig. 1: The effect of different carbon sources on biomass Chlorella vulgaris (Kong et al., 2011) 
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Fig. 2: The effect of different concentrations of potassium nitrate on Chlorella vulgaris biomass  
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Carbon and nitrogen interaction
A fundamental problem in the optimization 

of microalgae culture system operating under 
mixotrophic condition is detailed analysis of 
organic carbon and nitrogen concentration effect. 
Several microbiology  studies indicated a significant 
interaction between carbon and nitrogen metabolism 
in photosynthetic microorganisms (Huppe and 
Turpin, 1994; Foyer et al., 2001; Hilig et al., 
2014). Depending on the concentration of nitrogen 
applied, addition of organic carbon may decelerate 
or increase the microalgae growth. The amount 
of organic carbon concentration that will result 
in least decrease in microalgae growth depends 
slightly on nitrogen source content and mainly on 
the concentration of nitrogen. Control of C/N ratio 
in industrial applications aiming to produce biofuel 
is essential. At first the high nitrate concentrations 
are considered in these applications to achieve the 
desired growth rate and then it is kept at low levels 
to improve lipid productivity in favorable cellular 
concentration (Hu and Gao, 2003; Shen et al., 
2008; Pilarek et al., 2013; Li et al., 2014; Sayadi 
et al., 2016). Pagnanelli et al. (2013) stated that the 
mixotrophic growth obeys the interaction between 
organic carbon and nitrogen. This ratio can have 
a profound effect on microalgae growth kinetics 
modeling and culture system operations. Controlling 
C/N ratio is particularly essential to optimize the 
performance of the reactor. They presented an exact 
analysis of interaction effect of organic carbon and 
nitrogen on specific growth rate. In this study, the 
average specific growth rate <μmax> was calculated 
based on a set of experiments and experimental data. 
It was observed that increasing concentration of 
organic carbon, in constant nitrogen concentration, 
causes a transfer to undesirable growth area 
(decreasing specific growth rate). It should be noted 
that in each given nitrogen concentration, there is 
a maximum concentration of organic carbon, that 
exceeding it will result in μmax   of sample to be lower 
than <μmax>. This amount also represents entering 
undesirable growth area and by increasing nitrogen 
concentration, its amount increases. Thus, it can be 
concluded that growth regime should be determined 
using C/N ratio, not carbon or nitrogen concentration 
alone. The analysis showed evidences that caused 
avoiding C/N excessive raise. It is known that for 
C/N above 17, μmax values will be less than <μmax>.

pH
Khalil et al. (2010) reported that Chlorella vulgaris 

can grow in a wide range of pH (4-10) and most 
biomass productivity is achieved in the alkaline 
environment (pH = 9 and 10). Yu et al. (2000) 
showed that the pH value in the autotrophic growth 
increased over time as high as 10 but this amount 
for heterotrophic and mixotrophic growth swayed 
around 7. Gong et al. (2014) investigated the effect 
of pH using an interesting experiment. In their work, 
pH was considered in four levels, from neutral to 
alkaline ranges (7-10). They took two strategies. 
In the first one, they applied an initial pH, and then 
applied no control on it to the end of the experiment. 
In the second strategy, the system started with an 
initial pH then pH was adjusted to its initial value 
every day. They found that the most appropriate 
pH for vulgaris growth is pH range between 10 and 
10.5. Also, in pH controlling method, if the pH was 
in optimal range, the best growth for microalgae will 
result. Study on the autotrophic cultivation of Chlorella 
vulgaris indicated that there is a complex relationship 
between CO2 concentration and pH, which depends on 
the chemical species equilibrium in the culture system, 
so as to increase the concentration of CO2, increases 
the biomass production. In contrast, decreasing pH may 
have undesirable effects on cell proliferation (Kumar et 
al., 2010; Yan et al., 2013). Kong et al. (2011) research 
on effect of different sources of nitrogen on changing 
system pH in mixotrophic Chlorella vulgaris culture 
showed that the use of ammonium, reduced pH to about 
3, that was not desired at all, but using potassium nitrate 
and urea, pH fluctuated about 7.2.

Light intensity
Illumination consists of two subjects: intensity and 

wavelength of light. Evidence suggests that the light 
acts as a guide and helping factor to cell proliferation 
and it helps cellular respiration and photosynthesis. 
During endothermic reactions for carbon metabolism, 
energy is needed and this energy is supplied by 
light. Light is a major factor in the process of 
photosynthesis to convert carbon dioxide into organic 
compounds, such as carbohydrates and proteins, in 
which water and oxygen are released. If the growth 
of microalgae is done in light limitation, cellular 
mechanisms progresses to produce carbon into amino 
acids and other essential compounds for cell, but in 
the saturated illumination, sugar and starch production 
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is increased and the maximum growth rate is stabilized. 
However, some findings suggest a non-continuous 
illumination strategy, because growth rates remains 
high and production costs are reduced. This is because 
cell division for single-celled photosynthetic culture 
usually occurs under dark conditions. However, for 
others cases, cell division occurs in both dark and light 
phases, but for vulgaris microalgae, more cell division 
occurs after stopping the lighting phase. Moreover, 
some enzymatic mechanisms may be disabled during 
illumination (Hultberg et al., 2014; Al-Qasmi et al., 
2012). A research under different light intensities of 
approximately 3, 5 and 7 kLux and 8:16, 12:12 and 
16:8 lighting periods (light:dark) was performed to 
investigate the matter (Zehnder and Gorham, 1960; 
Mayo, 1997). Fig. 3 shows such a long time lighting 
(16:8) which will increase vulgaris biomass, and the 
maximum biomass (2.025g/L) is obtained in 5 kLux 
and lighting period of 16:8. In Fig. 3 under high light 
intensity conditions, 7 kLux, creation of light barrier, 
reduces the production of biomass, because the extra 
light can not be absorbed for photosynthesis and it may 
damage to microalgae and stop its growth (Khoeyi et 

al., 2012; Ryu et al., 2009).
Studies showed that lipid and PUFAs (poly 

unsaturated fatty acids) decrease with increasing light 
intensity (Orcutt and Patterson, 1984; Corre et al., 
1996). Light application efficiency may be optimized 
by prolonging the period of darkness under high light 
intensity. This allows the photosynthetic activities in 
cells to use all available photons and convert them into 
chemical energy, thus it prevents inhibiting effects of 
light (Long et al., 1994). Also in Table 1, the percentage 
of SFA, MUFA and PUFA respectively, saturated 
fatty acid which is suitable for biodiesel production, 
monounsaturated fatty acid and polyunsaturated 
fatty acid are shown in different light regimes. With 
increasing light intensity, the amount of SFA increases 
and the amount of MUFA and PUFA reduce (Richmond 
et al., 2004; Ugwu and Aoyag, 2012). In another 
experiment, the cultivation illumination was set at 3, 7 
and 14 kLux levels. As Fig. 4 indicates for vulgaris in 7 
days of culture, light intensity of 14 kLux is optimum, 
but at more cultivation time like 17 days, 7 kLux was 
optimal condition. In another study maximum lipid of 
20% and the maximum concentration of biomass, 0.75 

Table 1: Fatty acid composition of Chlorella vulgaris in different light regimes (Richmond et al., 2004) 
 
 

Light 
Regime 2800(Lux) 4600(Lux) 7400(Lux) 

 8:16h 12:12h 16:8h 8:16h 12:12h 16:8h 8:16h 12:12h 16:8h 
 
Saturated fatty acid (SFA) 
14:0 0/6±0/2 0/7±0/3 0/8±0/2 0/8±0/4 1/22±0/5 1/6±0/3 1/5±0/4 1/2±0/2 1/5±0/4 
16:0 20/22±1/2 21±1/5 21/4±0/4 22/1±2/5 22/1±0/3 22±3/5 21/5±0/3 21/5±0/4 21/7±0/7 
18:0 3±0/3 3/4±0/4 3±0/1 3/6±0/4 4/1±0/5 4/25±0/6 6/5±0/5 6/5±0/7 6/4±0/6 
20:0 0/11±0/1 0/2±0/1 0/22±0/1 0/1±0/1 0/15±0/1 0/25±0/2 0/2±0/1 0/23±0/2 0/19±0/1 
24:0 2±0/5 3±0/4 3/25±0/3 3±0/4 3/5±0/2 3/13±0/5 3±0/4 3/95±0/7 4±0/3 
Total 
SFAS 25/9C 28/25d 28/67bc 29/6cd 31/1b 31/23cd 32/7ab 33/38a 33/38a 

 
Momounsaturated fatty acid (MUFA) 
14:ln-5 0/7±0/2 0/1±0/1 0/4±0/2 0/21±0/2 0/38±0/2 0/56±0/3 0/47±0/2 0/49±0/3 0/52±0/4 
16:ln-7 0/7±0/2 0/8±0/3 0/6±0/3 0/7±0/4 0/36±0/2 0/4±0/2 0/42±0/3 0/38±0/2 0/35±0/2 
18:ln-9 12±3 12±4 12/1±4/5 12/05±5/2 11/56±5 11±6 10/99±5 10/8±4/6 10/7±0/3 
19:ln-9 2/03±0/5 0/9±0/3 1/45±0/5 1/16±0/4 0/53±0/2 0/84±0/5 0/69±0/4 0/77±0/5 0/73±0/3 
20:ln-9 0/5±0/2 0/6±0/4 0/6±0/3 0/29±0/2 0/32±0/2 0/35±0/3 0/34±0/2 0/34±0/1 0/3±0/2 
Total 
MUFAs 15/93a 14/33ab 15/15ab 14/41ab 13/15bc 13/15cd 12/9dc 12/78c 12/6f 

 
Polyunsaturated fatty acids (PUFA) 
18:3n-3 18/25±6 18±5 18±4/5 19±6 19/4±5/5 19/38±0/5 18/4±4 18/3±5/5 18/1±3 
18:3n-6 4/45±1.5 4/1±0/2 4±1/2 3/7±1 3±1/5 2/38±1 1/8±0/5 1/5±1 1/3±0/5 
20:2n-6 0/34±0/2 0/23±0/1 0/1±0/1 0/11±0/1 0/12±0/1 0/08±0/05 0/1±0/05 0/09±0/4 0/08±0/02 
20:4n-6 0/98±0/2 0/85±0/3 0/9±0/2 0/8±0/3 0/72±0/4 0/7±0/4 0/35±0/2 0/3±0/1 0/25±0/1 
20:5n-3 0/88±0/2 0/87±0/3 0/88±0/4 0/87±0/4 0/58±0/2 0/28±0/1 0/2±0/1 0/2±0/1 0/2±0/1 
22:5n-6 2±0/5 2±1 1/3±0/3 1/1±0/5 0/8±0/3 0/95±0/4 0/6±0/2 0/45±0/3 0/1±0/1 
22:6n-3 0/5±0/1 0/58±0/2 0/4±0/2 0/4±0/3 0/85±0/4 071±0/3 0/25±0/2 0/15±0/1 0/3±0/1 
Total 
PUFAs 27/4a 26/63ab 25/58b 25/98ab 25/47b 24/48b 21/7b 20/99b 20/33b 

  
  

Table 1: Fatty acid composition of Chlorella vulgaris in different light regimes (Richmond et al., 2004)
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g/L were obtained in 14 kLux, while cells under 2 and 9 
kLux of light, achieved the amount of lipid 14.1% and 
11%, respectively (Dvoretsky et al., 2015).

However, in the case of wavelength, microalgae 
usually uses wavelengths between 400-700 nm for 
photosynthesis. The wavelength microalgae absorbs 
varies depending on the type of microalgae (Blair et al., 
2014). Maximum and minimum number of Chlorella 
vulgaris cells production is in red light (λ=630-665nm) 
and blue light (λ=430-465) respectively. Mathy et 
al. (1996) reported that red light leads to increase 
chlorophyll pigment, which reflected the positive 
effect of red light (Wang et al., 2007; Yek and Chang, 
2011). Vulgaris cell size measurement revealed that the 
growth of microalgae cells under blue light, compared 
to red light had an approximately increase of 70-60% 
in diameter (Fig. 5). 
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Fig. 4: Growth of biomass at different levels of lighting (Lv et al., 2010) 
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Fig. 5: The effect of different wavelengths on cell size 
(Wang et al., 2007)

 

 

Fig. 5 

 

 

Fig. 6 

 

Blue

Red

White

0

1

2

3

4

5

6

1

Ce
ll 

siz
e 

(µ
m

)

White
Red

Blue

R1B4

R2B3 R3B2 R4B1 B1R4

B2R3 B3R2

B4R1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1

Bi
om

as
s y

ie
ld

 c
am

pa
re

d 
w

ith
 w

hi
te



224

Optimal condition for Chlorella vulgaris

Fig. 6 shows that the blue light is not effective 
for growth alone. The best condition for maximum 
biomass is B3R2 with 3 days blue and 2 days red 
and B2R3 with 2 days blue and 3 days red. Because 
the initial blue light creates a large cell size and high 
potential for secondary divisions under red light and 
also increases the final products (Kim et al., 2014).

Temperature
One of the most important environmental factors 

affecting various aspects of growth and fatty 
acid composition for several microorganisms is 
temperature. Temperature also can affect enzymatic 
reactions, cell membrane system and other 
characteristics (Zeng et al., 2011). Growing conditions 

at low temperature leads to a spontaneous reaction 
and change the cellular mechanism and thereby 
reduction in the fluidity of the cell membranes. This 
will increase the proportion of unsaturated fatty acids 
to compensate for fluidity reduction. Low temperature 
limits cell growth speed and therefore reduces the 
biomass production (Nishida and Murata, 1996). The 
optimal temperature for Chlorella vulgaris is about 
30°C, in which the maximum biomass productivity is 
achieved (Chinnasamy et al., 2009; Xu et al., 2006). 
Converti et al., (2009) reported that Chlorella vulgaris 
growth rate at 35°C decreases 17% compared to 30°C. 
An excessive rise in temperature to 38 ° C leads to 
an abrupt halt in microalgae growth and cells die. 
With increasing temperature to 30 ° C cell growth 

Fig. 6: Biomass production obtained with monochromatic lights and the combine wavelengths (Wang et al., 2007)

 

 
Fig. 7: Growth of biomass at different temperatures (Dvoretsky et al., 2015) 
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rate increases and then decreases with increasing 
temperature to 35°C (Cassidy, 2011). Similar results 
show that the highest biomass efficiency is obtained at 
30±2°C and with increasing temperature to 35±2, the 
efficiency of biomass drops (Barghbani et al., 2012). 
Dvoretsky et al. (2015) has reported that the highest 
biomass production, 51 Mcell/ml was achieved in 9 
days of culture at 30 ° C (Fig. 7). 

In another study after 7 days of culture, optimum 
temperature has been reported between 30-35 ° C and 
the most biomass was obtained 3.6 g/L (Barghbani 
et al., 2012). Temperature increases in Chlorella 
vulgaris from 25-30°C reduces the amount of lipid 
percent from 14.7% to 9.5% (Converti et al., 2009) 
and also protein synthesis (Konopka and Brock, 
1978). An increase in temperature from 20 to 30°C, 
increases the concentration of intracellular free amino 
acids from 840 to 1810 mg (per 100 g dry weight), and 
is followed by reduction in protein and starch amount 
(Nakamura and Miyachi , 1982; Mitsui et al., 1977).

Aeration 
Aeration is one of the key parameters for 

microalgae culture medium and depending on the 
microalgae species, the type of culture of open system 
or photobioreactor and culture system scale (big or 
small), there are several ways to apply it (Ugwu and 
Aoyagi, 2012). The benefits of aeration or mixing 
include preventing precipitation of microalgae, 
homogenization of cultivation environment so that 
all of the cells can reach light and food, avoiding 
temperature differences (isothermal condition through 
the cultivation environment) and facilitating the 
exchange of gases between the cultivation environment 
and air. Proportional to the scale of culture, mixing 
may be done by manual shaking on a daily basis for 
laboratory scale cultivation in erlenmeyer flasks and 
test tubes, or aerated peristaltic pump for larger scale 
or use the circulator arms in large pool (Lavens and 
Sorgeloos, 1996; Morric et al., 2008). Liang et al. 
(2009) stated that the maximum amount of cells lipid 
with aeration intensity of 200 ml/min was obtained 54 
mg/L (Ogawa and Aiba, 1981). Khoeyi et al. (2012) 
obtained the maximum concentration of biomass 2.05 
g/L in aeration intensity of 3 cm3/s. Kim et al. (2014) 
reached cellular fatty acid content of 11.07% (on dry 
basis) with air flow rate of 100 ml/min. Although 
aeration is an important factor in biomass growth, 
especially at the starting time of the formation of 

the first cellular nucleus and severity of aeration or 
unbalanced aeration can lead to first cellular nucleus 
death. But, so far the direct effect of aeration on 
growth and cellular lipid production rate has been 
less studied and is often intended as a fixed side factor 
(Kim et al., 2014).

Biodiesel production from Chlorella vulgaris
After microalgae cultivation, there are several 

downstream processes to biodiesel production 
including: 1) Harvesting/dewatering: since algal 
cultures are mainly grown in water it is required to 
concentrate harvested algal biomass prior to extraction 
and conversion. 2) Extraction: next step is extraction 
of lipids including triglycerides and fatty acids from 
algal biomass. It can be performed by different methods 
but most common methods are Folch and Bligh-Dyer. 
3) Conversion: final process is conversion of lipid to 
methyl ester fatty acids. This reaction is done between 
lipid and methanol in presence of alkaline catalyst 
and products are glycerol and methyl esters that can 
be used as biodiesel (Blinova et al., 2015; Faramarzi 
et al., 2010). Miao and Wu (2006) expressed that 
produced biodiesel of Chlorella vulgaris has 39 MJ/
kg heat value equal to its heat of combustion. Cao et 
al. (2013) obtained the biodiesel production efficiency 
about 92% using vulgaris.

CONCLUSION
Currently biofuel with microalgae origin due to 

environmental and economic capabilities is one of the 
most important human options for the supply of clean, 
inexpensive and reliable energy. For this purpose, 
different species of microalgae have been studied 
and evaluated. Among them, Chlorella vulgaris due 
to their favorable biological characteristics are highly 
regarded. The growth of these microorganisms under 
different growth conditions and regimes is one of 
these features, but overall research proved that its 
culture under the simultaneous presence of light and 
an organic carbon source (mixotrophic culture), will 
result in highest biomass productivity and cellular 
lipid to produce biodiesel. The optimal condition 
for growth, through nutritional conditions, carbon 
source and nitrogen source is most effective. Based 
on empirical studies conducted, best carbon source 
for vulgaris is glucose and its optimal concentration 
is obtained 20 g/L with the largest biomass production 
of 2.24 g/L, and the maximum lipid productivity of 
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66.25 mg/L/day. Among the sources of nitrogen, 
nitrate compounds showed the best results. Thus, 
the maximum biomass production and high lipid 
productivity was obtained in concentration of 0.5 g/L 
potassium nitrate, 3.43g/L and 47.1 mg/L/day. The 
relationship between the concentration of carbon and 
nitrogen sources, existence of interaction in form of 
the C/N ratio is clearly proven, but more accurate 
analysis and explanation requires further researches. 
The best physical condition in order to achieve 
maximum growth performance and lipid production 
was obtained in alkaline environment (pH=9 to10), 
temperature 30°C, light intensity 5-7 kLux and 
aeration intensity 100 ml/min respectively. The 
summary of researchers on Chlorella vulgaris growth 
is shown in Table 2.
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ABBREVIATIONS
CO2 Dioxide carbon
C/N Carbon nitrogen ratio
SEM Soil extract  medium
KNO3 Nitrate potassium

µmax Average specific growth rate
PUFA Polyunsaturated fatty acid
SFA Saturated fatty acid
MUFA Monounsaturated fatty acid
λ Wavelength 
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