Environmental Engineering
L. Sulistyowati; N. Andareswari; F. Afrianto; A. Rais; M.F. Hafa; D. Darwiyati; A.L. Ginting
Abstract
BACKGROUND AND OBJECTIVES: The monitoring of the Brantas watershed showed a light-polluted status. This study began by identifying the priority of regional problems using importance-performance analysis. Furthermore, a hydrological analysis was conducted to determine the pollutant area of the Brantas ...
Read More
BACKGROUND AND OBJECTIVES: The monitoring of the Brantas watershed showed a light-polluted status. This study began by identifying the priority of regional problems using importance-performance analysis. Furthermore, a hydrological analysis was conducted to determine the pollutant area of the Brantas watershed by applying terrain analysis. When terrain analysis in hydrology is combined with participatory community information, it can provide valuable insights into water pollution and help prioritize remediation efforts. Integrating local knowledge with scientific data can improve decision-making and increase the effectiveness of water management strategies.METHODS: The methodological approach employed in this study included importance-performance analysis to determine priority problems in Batu City and terrain analysis as a hydrological analysis to determine the pollutant area in the Brantas watershed. The importance-performance analysis assessment data were obtained from 197 respondents representing the occupations of the people of Batu City. The terrain analysis data were derived from the surface elevation data in the form of a digital elevation model.FINDINGS: According to the importance-performance analysis community assessment, urban trash management was one of the crucial yet low-rated features. The terrain analysis results demonstrated that business and industrial activities were distributed in locations with high flow accumulation values, indicating that the water pollution in Batu City was triggered by the presence of business and industrial activities in the watershed accumulation areas. Along the upstream Brantas watershed, 460 business and industrial activities were discovered. Therefore, the results of importance-performance analysis and terrain analysis had a correlation. They were also closely related to the assessment results of the contaminated Brantas watershed.CONCLUSION: The following are some recommendations for the watershed's quality improvement: 1) cooperation among the Government, communities, and the private sector for addressing water pollution issues; 2) the development of environmentally friendly technologies in water treatment; and 3) education and outreach to communities about the importance of preserving water resources. As a city experiencing rapid urban development, environmental degradation constitutes a risk to be borne. Accordingly, Batu City must continue to develop good environmental management for the sake of nature conservation because the urban system is a unit formed by the social economy and ecological environment subsystem.
Environmental Engineering
A. Suharyanto; A. Maulana; D. Suprayogo; Y.P. Devia; S. Kurniawan
Abstract
BACKGROUND AND OBJECTIVES: This study aims to determine the relationships between land cover presented by vegetation index and land surface temperature, between vegetation index and the built-up index, between built-up index and land surface temperature, and between land surface temperature and rainfall ...
Read More
BACKGROUND AND OBJECTIVES: This study aims to determine the relationships between land cover presented by vegetation index and land surface temperature, between vegetation index and the built-up index, between built-up index and land surface temperature, and between land surface temperature and rainfall characteristics in East Java Province, Indonesia.METHODS: Three cities and four regencies were used as examples. Landsat imagery scanned in 1995, 2001, 2015, and 2020 were used. Daily rainfall data recorded in the same years with Landsat data are used. The pixel values along the urban heat island line were used to analyze the interrelationships between vegetation index, built-up index, and land surface temperature. The land surface temperature and daily rainfall data from each Thiessen polygon were used to analyze the relationship between land surface temperature and rainfall characteristics. Image processing analysis was used to analyze the vegetation index, built-up index, and land surface temperature. The mathematical interrelationship between vegetation index, built-up index, land surface temperature, and rainfall intensity was analyzed using linear regression.FINDINGS: The results of the analysis show that the relationship between vegetation index and built-up index is inversely proportional and with land surface temperature is nearly inversely proportional to a coefficient of determination greater than 0.5. For the relationship between the built-up index and land surface temperature, the results of the analysis show that both have a directly proportional relationship, with a significant coefficient of determination (R2>0.5). For the relationship between land surface temperature and rainfall characteristics, the results of the analysis show that land surface temperature has a directly proportional but weak relationship with rainfall intensity and an inversely proportional but weak relationship with the number of rainfall days. Decreasing environmental conditions indicated by decreasing vegetation index will influence increasing land surface temperature and its effect on increasing rainfall intensity and decreasing rainfall days.CONCLUSION: Changes in land use/land cover are characterized by a change in vegetation cover to built-up land. These changes affect the land surface temperature. Changes in land surface temperature affect the occurrences of rainfall intensity. When the vegetation index decreases, the built-up index increases, and the land surface temperature increases as well. The increase in land surface temperature will increase the rainfall intensity. Satellite remote sensing imagery is effective and efficient for analyzing vegetation index, built-up index, and land surface temperature.
Environmental Engineering
J. Oliver Paul Nayagam; K. Prasanna
Abstract
BACKGROUND AND OBJECTIVES: The prediction models, response surface methodology and adaptive neuro-fuzzy inference system are utilized in this study. This study delves into the removal efficiency of reactive orange 16 using hydrochar derived from the Prosopis juliflora roots. Hydrochar dose, pH, temperature, ...
Read More
BACKGROUND AND OBJECTIVES: The prediction models, response surface methodology and adaptive neuro-fuzzy inference system are utilized in this study. This study delves into the removal efficiency of reactive orange 16 using hydrochar derived from the Prosopis juliflora roots. Hydrochar dose, pH, temperature, and initial reactive orange 16 concentration were studied in batch processes. The correlation coefficients for the batch processes were found to be 0.978 and 0.9999. The results denote that the adaptive neuro-fuzzy inference system predicted the reactive orange 16 removal efficiency more accurately than the response surface methodology model.METHODS: Prosopis juliflora roots roots are converted into hydrochar to remove azo dye from textile waste water. Prosopis juliflora roots roots were collected from Ramanad District, Southern Tamil Nadu, India. The moisture content was lowered by drying for 24 hours at 103 degree celcius in an oven with hot air. This biomass was thermally destroyed at 300 degree celcius for 15 minutes without oxygen in an autoclave in a muffle furnace (heating rate: 5 degree celcius per minute). As soon as it reaches room temperature, the hydrochar residue of this biomass was used for adsorption investigations. The batch adsorption process was conducted for 6 hours in a 250 milliliter Erlenmeyer conical flask with a 100 milliliter working volume using an orbital shaker. The pH, dosage, concentration, and temperature are the four parameters chosen for this study to find the maximum removal efficiency of the dye from aqueous solutions. This study validated adaptive neuro-fuzzy inference system, an artificial neural network with a fuzzy inference system, using response surface methodology projected experimental run with Box–Behnken method.FINDINGS: The adaptive neuro-fuzzy inference system model is created alongside the response surface methodology model to compare experimental outcomes. Experimental data was evaluated using a hybrid least square and gradient technique. Statistical and residual errors assessed experimental and mathematical model correctness. Experimental data matched the adaptive neuro-fuzzy inference system results. Statistical error analysis verified the model’s accuracy and precision against experimental data.CONCLUSION: Response surface methodology and adaptive neuro-fuzzy inference system optimized process conditions. At pH 2, 2 gram per litre hydrochar dosage, 35 degree celcius , and a reactive orange 16 starting concentration of 250 milligram per liter, removal effectiveness reached 86.1 percent. Adaptive neuro-fuzzy inference system predicted higher values than response surface methodology, with batch correlation coefficients of 0.9999 and 0.9997, respectively. Mathematical techniques can accurately estimate dye removal efficiency from aqueous solutions.
Environmental Engineering
N.D. Takarina; O.M. Chuan; T.G. Pin; I. Femnisya; A. Fathinah; A.N.B. Ramadhan; R. Hermawan; A. Adiwibowo
Abstract
BACKGROUND AND OBJECTIVES: Tropical coastal ecosystems globally have been affected by land use changes. This condition has caused a discharge of pollutants into the water, affecting marine organisms, including fish. Due to their habitat preferences, fish are prone to elevate heavy metals in their tissue. ...
Read More
BACKGROUND AND OBJECTIVES: Tropical coastal ecosystems globally have been affected by land use changes. This condition has caused a discharge of pollutants into the water, affecting marine organisms, including fish. Due to their habitat preferences, fish are prone to elevate heavy metals in their tissue. Considering fish is consumable, heavy metal levels in fish can lead to health risks. One of the common edible fish in Southeast Asia is Pennahia argentata. Although widely consumed, there is limited information on how land use influences heavy metal levels in various tissues of this species and its health risk. Fish is one of the main food sources in this region, indicating this information’s importance. This study aims to elaborate on and differentiate the heavy metal levels in tissues and land use types, including settlement and mangrove areas on the West Java coast of Indonesia.METHODS: Locations of this study are the Jakarta coast representing anthropogenic influences in the form of settlements and the Subang coast as a site of mangrove covers. This study combined remote sensing and Geographic Information System analysis with heavy metal analysis using inductively coupled plasma and studied heavy metals, including cadmium, copper, and zinc, in fish tissues such as the gill, digestive tract, and muscle. Differences and correlation of heavy metal data in each tissue and location were statistically analyzed using Pearson correlation values (r), Analysis of Variance, and x2-test. The estimated Daily Intake was used to determine the health risk consumption of this species.FINDINGS: All levels of heavy metals are below the World Health Organization’s permissible limits. Zinc is consistently high in all tissues and locations, while cadmium is the lowest. The result shows that the digestive tract consistently has the highest heavy metal levels compared to other tissues in both locations. Heavy metal in muscle has the lowest level. Copper and zinc in the muscles of fish living on the settlement coasts were 62.69% and 37.18% higher (P <0.05) than fish inhabiting mangrove coasts.CONCLUSION: Trace elements in the commercial fish P. argentata were significantly affected by differences in land use. Variations in land use have elevated heavy metal levels in fish tissues. Given the high levels of heavy metals, the digestive tract can be chosen as a specific fish tissue to be used as a bioindicator to monitor cadmium, copper, and zinc, particularly on the West Java coast in Indonesia. Because the Estimated Daily Intake for zinc in Jakarta is high, consuming fish should be done with caution.
Environmental Engineering
N. D. Takarina; O. M. Chuan; M. I. Afifudin; L. Tristan; I. Arif; A. Adiwibowo
Abstract
BACKGROUND AND OBJECTIVES: Coastal ecosystems worldwide have been threatened by changing land use and environmental determinants. These conditions have impacted important marine resources, including fish diversity. Southeast Asia, one region experiencing massive land use change, still has limited information ...
Read More
BACKGROUND AND OBJECTIVES: Coastal ecosystems worldwide have been threatened by changing land use and environmental determinants. These conditions have impacted important marine resources, including fish diversity. Southeast Asia, one region experiencing massive land use change, still has limited information on how land use and disturbed coastal ecosystems impact fish diversity. This information is urgently needed as fish is one of the most important food resources here. This study aims to assess and compare the environment and tropical fish community between disturbed and intact sites, represented by coasts dominated by settlements and coasts dominated by mangrove forests in West Java, Indonesia.METHODS: Fish sampling was carried out at two sites: Jakarta as the disturbed site and Subang as the intact site; water quality was also measured at these sites. Land uses at the sites were interpreted using satellite imagery. Fish diversity was determined using the Shannon–Wiener index, rarefaction curve, and Lorenz graph. Principal component analysis, analysis of variance, and the x2-test were used to determine environmental factors that affected the fish community at both sites. Akaike’s information criterion was assigned to model the relationship between environmental factors and the fish community.FINDINGS: Coasts characterized by anthropogenic disturbances and the absence of mangrove cover have a lower potential of hydrogen (pH) and reduced fish diversity by up to 53.91%. The intact site had higher fish diversity and made a greater contribution to conservation by providing habitats for fish species with the least concern and vulnerability statuses, according to the International Union for Conservation of Nature Red List. From the AIC model, the decreasing water pH (AICc = 27.28) was the main determinant that reduces fish diversity at disturbed sites compared to dissolved oxygen (Akaike’s information criterion = 28.13) and salinity (Akaike’s information criterion = 29.95).CONCLUSION: The coastal fish community was affected by differences in environmental factors, land uses, and mangrove cover driven by anthropogenic influences. The AIC model proved capable of assessing the effects of environmental factors on coastal fish communities. This study modeled environmental factors that should be managed and prioritized to restore and conserve the fish community along tropical coasts.
Environmental Engineering
A.M. Vazquez; A. Samudio-Oggero; H.D. Nakayama; I. Cantero-García
Abstract
BACKGROUND AND OBJECTIVES: The Municipal Park of Areguais is located in the Central Department of Paraguay. Part of this Park is within the area of influence of Ypakarai Lake, which is widely recognized by vacationersfor its natural spaces. Despite being one of the most representative ecological reserves ...
Read More
BACKGROUND AND OBJECTIVES: The Municipal Park of Areguais is located in the Central Department of Paraguay. Part of this Park is within the area of influence of Ypakarai Lake, which is widely recognized by vacationersfor its natural spaces. Despite being one of the most representative ecological reserves in the country, annual waterquality reports indicate the presence of a high content of pollutants; mainly nitrogen, phosphorus, andfecalcolifoirs, among others. These conditions promote the proliferation of cyanobacteria which consume the available oxygenand compromise the reserve’s flora and fauna. Following several laboratory tests, the present work has the objective of evaluating the impact of thepark’s recently constructed wetland’son the treatment of residual waters.There are several parameters evaluated in thisstudy of final wastewater discharge disposal treatmentthrough a constructed wetland of horizontal flow with Typhadomingensis. The objective is to develop an adequate system for the treatment of residual waters that can be replicated in places with similar conditions.METHODS: The evaluation consisted of analyzing the residual water and finding the removal percentage for each of the following parameters such as chemical oxygen demand; biochemical oxygen demand; total phosphorus; total nitrogen; fecal coliforms; hydrogen potential; and temperature. The quality of the treated water was determined by comparing it with the limits established in Article 7 of Resolution Number 222/02 of the Environment Secretary for effluents. The results demonstrate that this system is aviableoption for the removal of fecal coliforms and nutrients such as phosphorus and nitrogen.FINDINGS: In terms of the quality of the treated water, the parameters studied are within the limits,established by Resolution Number 222/02of the Environment Secretary for Class 2 waters, for water to be discharged into the receiving body. The results obtainedwere: 88.9 percent fecal coliform removal; 84.9 percent total nitrogen; 73.3 percentchemical oxygen demand; 61.4 percent biochemical oxygen demand; and 14.2 percent Total Phosphorus. Considering Resolution 222/02, the biochemical oxygen demand, Total Nitrogen, and Total Phosphorus were outside the admissible limits.CONCLUSION: It is very feasible for wastewater generated in public parks to be treated through the construction of sub-surface flowwetlands.This study confirms that the treated wastewater is within the establishedlimitsfor all the parameters: temperature, hydrogen potential, biochemical oxygen demand, chemical oxygen demand, total nitrogen, total phosphorus, and fecal coliforms. This model of water treatment can be easily adopted.
Environmental Engineering
A. D. Santoso; T. Handayani; D. Pinardi; K. Kusrestuwardani; N. Widyastuti; I. N. Djarot; J. Haryanti; A. I. Sitomurni; H. Apriyanto
Abstract
BACKGROUND AND OBJECTIVES: Palm oil mill effluent is a liquid waste produced at a palm oil mill industry during the production process containing abundant organic pollutants such as nitrogen and phosphorus that will be harmful to the environment. However, palm oil mill effluent as a nutrient for the ...
Read More
BACKGROUND AND OBJECTIVES: Palm oil mill effluent is a liquid waste produced at a palm oil mill industry during the production process containing abundant organic pollutants such as nitrogen and phosphorus that will be harmful to the environment. However, palm oil mill effluent as a nutrient for the growth of microalgae has the potential for pollutant removal as well as algae biorefinery products such as biofuel, functional food and many others. This research objectives to analyze the sustainability of the microalgae biomass production for bio-refinery based on the sustainability index assessment. METHODS: The primary data was compilated via the questionnaires to researchers in the community of microalgae as well as scientific judgment by experts as respondents. Data is processed and analyzed using the multidimensional scaling Rapfish program. Data analyzed was conducted by analyzing four dimensions: social, economic, ecological, and technological dimensions which consisting of 47 attributes.FINDINGS: The result showed that the sustainability index calculated was 73.53 percent (good), which indicates the process has the potential to be developed while paying attention to leverage factors in every dimension of the sector. Analysis of each dimension on the 4 dimensions shows that the environment dimension is lowest in 67.30 percent, while the economy, technology and social dimension are 70.99 percent, 73.67 percent and 82.17 percent, respectively. Some leverage attributes that require more attention in order to improve sustainability are management experience and skills (in environment dimension), involvement of family member (in the social dimension), the productivity level (in economic dimension), and management of experience and skill (technological dimention).CONCLUSION: Based on the prospective analysis, it is known that there are 4 key factors or dominant factors that are very influential in the microalgae supply system, namely production, productivity, land conversion, consumption per capita and population. It is still necessary to do further research for the utilization of microalgae biomass into value-added products with an optimal, technically, economically, environmentally and socially sustainable system. The study provides insights on the feasibility of the proposed sustainable concept in Indonesia for the government to arrange policies and programs.
Environmental Engineering
M.R. Yousefi; A. Noorzad; M.J. Mahmoodi
Abstract
BACKGROUND AND OBJECTIVES: Harmful ruptures and instabilities in landfills in recent years have highlighted the importance of studying the municipal solid waste and its behavior. These instabilities mostly occur in the landfill of developing countries where waste materials are degradable and saturated. ...
Read More
BACKGROUND AND OBJECTIVES: Harmful ruptures and instabilities in landfills in recent years have highlighted the importance of studying the municipal solid waste and its behavior. These instabilities mostly occur in the landfill of developing countries where waste materials are degradable and saturated. The behavior of waste and its ingredients are unknown as the main reasons for such instability. The main goal of this study was to better predict the behavior of landfills and unknown materials in municipal solid waste to prevent the environmental disasters.METHODS: A cylindrical specimen was modeled and subjected to triaxial test loading conditions using the finite element method. Also, fresh waste, as a waste sample with a specific composition, was investigated. Using the optimization method, the constants of the presented equation were obtained and the basic model of stress strain was presented based on composite theory.FINDINGS: The whole models for predicting the waste behavior were presented based on the behavior models of soils. This was carried out by the theory of composite materials, which was used for the first time in this study. At the strains of less than 30 percent, a well agreement was observed between the results of the numerical and the present methods. Also, at confining stresses less than 100 kiloPascal, the root mean square of the relative error percentages between the total stresses obtained from the present model and another model was less than 10 percent. At higher confining stresses, this amount was in the range of 10 – 20 percent.CONCLUSION: The results of this study were compared with those of the experimental data in previous models to verify the proposed model. The model proved to be capable of simulating and predicting the municipal solid waste behavior under various loading conditions efficiently. The results implied that assuming the municipal solid waste as composite material was reasonable and could be extended to future studies.
Environmental Engineering
M. Dede; S. Sunardi; K.C. Lam; S. Withaningsih
Abstract
Landscape dynamics are a consequence of population growth, which can degrade river ecosystem services. Since various countries approved the millennium ecosystem assessment, it has inspired researchers to examine the relationship between landscape and river ecosystem services. Therefore, this study aims ...
Read More
Landscape dynamics are a consequence of population growth, which can degrade river ecosystem services. Since various countries approved the millennium ecosystem assessment, it has inspired researchers to examine the relationship between landscape and river ecosystem services. Therefore, this study aims to summarize previous studies about landscape and river ecosystem services using a systematic literature review. This study referred to the preferred reporting items for systematic reviews and meta-analysis. Data were obtained from six databases of scientific publications such as Scopus, Pubmed, Directory of Open Access Journals, Scilit, Neliti, and Garba Rujukan Digital. The results show that research on this topic has spread worldwide. Landscape data, reflected in land use and land cover, came from various sources containing geospatial information and is combined with field surveys. There were 3-18 types of land use and land cover and it did not always reflect detailed information about the research area. Meanwhile, nutrient regulation and water quality attracted the most attention for river ecosystem services. The interaction between the two variables is revealed through inferential statistics and modeling. As representations of the natural landscape, forests and grasslands have a positive and significant contribution to river ecosystem services. Therefore, knowledge of landscape and river ecosystem services is a preliminary effort to understand environmental processes in achieving sustainability, also valuable input for conservation and rehabilitation strategies in many countries. This review can be a proper reference for environmental management, especially in the landscape changes related to river ecosystem services.
Environmental Engineering
M.F. Nikshoar; M.A. Rowshanzamir; S.M. Abtahi; S. Soleimanian-Zad
Abstract
BACKGROUND AND OBJECTIVES: Soil frost heaving causes significant destruction to road pavements, railways, pipelines, and other lifeline infrastructures. The conventional methods for dealing with the soil frost heave are primarily based on using the materials whose production and use are harmful to the ...
Read More
BACKGROUND AND OBJECTIVES: Soil frost heaving causes significant destruction to road pavements, railways, pipelines, and other lifeline infrastructures. The conventional methods for dealing with the soil frost heave are primarily based on using the materials whose production and use are harmful to the environment. Due to the recent ecological concerns, developing novel alternative methods has received much attention. This study aims to investigate the possibility of using the microbially induced calcite precipitation method to control soil frost heave for less pollution introduction to the soil.METHODS: In this study, the Sporosarcina Pasteurii bacterium was used for calcite precipitation. The influence of three factors in four levels, including bacteria concentration, cementing solution concentration, and curing time, was investigated based on a plan set by Taguchi design of experiment method. The results were obtained by analysis of means and analysis of variance statistical methods and compared with the conventional frost heave reduction methods.FINDINGS: The results were presented in terms of heave ratio. Based on the testing results, the heave ratios (frost heave ratios of the treated to untreated samples) were obtained to be in the range of 0.21 to 0.42. The results showed that bacteria concentration was the most influential factor in the total frost heave of the treated soil. The influence of curing time was in second place, and the effect of cementing solution concentration was relatively less. The minimum frost heave was achieved in 108 colony-forming units per milliliter bacteria concentration, 0.6 mole per litre cementing solution concentration, and 21 days of curing.CONCLUSION: The findings indicated that the used method could be efficiently used to reach the desired objective. The heave ratios obtained by this method were promising to a great extent compared to the conventional methods. The reduction of frost heave due to the application of this method was attributed to the precipitated calcite within the soil voids and was justified by the scanning electron microscopy images of the treated soil samples. This study proved that the proposed method might be utilized as a potential ecological-friendly approach in the future researches.
Environmental Engineering
Z. Farajzadeh; M.A. Nematollahi
Abstract
BACKGROUND AND OBJECTIVES: The rank of Iran in terms of pollutant emissions, which mainly originate from the consumption of energy products, is much higher than the rank of gross domestic product, placing Iran the fourth in the production and consumption of gas and oil, among the cases with the highest ...
Read More
BACKGROUND AND OBJECTIVES: The rank of Iran in terms of pollutant emissions, which mainly originate from the consumption of energy products, is much higher than the rank of gross domestic product, placing Iran the fourth in the production and consumption of gas and oil, among the cases with the highest emission intensity in the world. Different driving forces account for the high emission intensity. This study decomposes the changes in the aggregate emission intensity of the selected pollutants into a broader scope of driving forces including energy, urbanization, output, labor, and trade-related variables. The examined pollutants were far beyond carbon dioxide, including nitrogen oxides, sulphur dioxide, and carbon monoxide, emitted from energy product consumption. The aim of this study was to investigate the emission intensity of the selected pollutants and their components. METHODS: Decomposition analysis was done to decompose the emission intensity into a broader scope of the driving forces far beyond what examined in the literature. For this purpose, two well-known artificial neural networks, multilayer perceptron, and wavelet-based neural network were applied to forecast the emission intensity of the selected pollutants and their components.FINDINGS: The emission intensity of nitrogen oxides and sulphur dioxide illustrated a decreasing trend. In contrast, a general increasing trend with significant fluctuation was observed for carbon monoxide and carbon dioxide emission intensity. Among the components, energy structure, population-labor ratio, and trade openness showed an intensity decreasing effect, while urban per capita output, urbanization, energy intensity, and industrial output-trade ratio contributed to higher emission intensity of the pollutants. Moreover, the multilayer perceptron and wavelet-based neural networks were recommended to examine the predictability of the emission intensity and its components.CONCLUSION: It was found that intensive and extensive growth and energy structure were the most significant driving forces of the emission intensity. The forecast results indicated that the emission intensity of nitrogen oxides, sulphur dioxide, and carbon monoxide might be predicted by the applied networks with a prediction error of less than 0.2 percent. However, the prediction error for carbon dioxide emission intensity was much higher.
Environmental Engineering
A. Mallongi; A.U. Rauf; R.D.P. Astuti; S. Palutturi; H. Ishak
Abstract
BACKGROUND AND OBJECTIVES: The increasing population and anthropogenic activities in coastal areas affects the presence of mercury in coastal waters. Therefore, this study aims to 1) assess the ecological and human health risk of mercury contamination in coastal water; 2) analyze the effectiveness of ...
Read More
BACKGROUND AND OBJECTIVES: The increasing population and anthropogenic activities in coastal areas affects the presence of mercury in coastal waters. Therefore, this study aims to 1) assess the ecological and human health risk of mercury contamination in coastal water; 2) analyze the effectiveness of polymer sulfur as an absorbent for mercury.METHODS: A total of fifteen water samples were obtained from the coastal areas of Makassar and were analyzed using cold vapor atomic absorption spectrophotometry. Ecological and human health risks were assessed using established assessment methods by the United States Environmental Protection Agency. The uncertainty and sensitivity tests for independent variables in human health risk were assessed by the Monte Carlo Simulation method. Furthermore, polymer sulfur was used as a promising technique for capturing and reducing the level of mercury in the water column.FINDINGS: The results showed that the mean concentration of mercury was very high and exceeded the values established by the World Health Organization, United States of Environmental Protection Agency, and Indonesian National Standards, indicating elevated risks to the ecosystem and human health in the future. Additionally, the Monte Carlo simulation model revealed that the non-carcinogenic risk caused by mercury exposure in adults and children was greater than 1 (Total Hazard Index>1), indicating the health adverse effects for both receptors. From the simulation results, the concentration of mercury at 23.3% and exposure time of 21.3 percent were the most influential and dominant factors in non-cancer risk for adults and children, respectively. Therefore, mercury concentration needs to be reduced in coastal areas. The application of polymer sulfur is effective for reducing mercury concentration in water with a percentage reduction range of 39 – 100 percent and p-value of 0.001.CONCLUSION: Mercury contamination of coastal water in Makassar city poses ecological and health risks. The application of polymer sulfur is an effective way for reducing mercury in the water column.
Environmental Engineering
A.S. Patimah; A. Prasetya; S.H.M.B. Santosa
Abstract
BACKGROUND AND OBJECTIVES: The research aimed to evaluate the water quality of the Cangkring River in Tuban Regency, East Java Province, Indonesia, at the segment near the oil and gas fields (Mudi Pad A, B, and C).METHODS: Water samples were collected from January to September 2021 at seven locations ...
Read More
BACKGROUND AND OBJECTIVES: The research aimed to evaluate the water quality of the Cangkring River in Tuban Regency, East Java Province, Indonesia, at the segment near the oil and gas fields (Mudi Pad A, B, and C).METHODS: Water samples were collected from January to September 2021 at seven locations along the river segment and tested ex-situ using six parameters, including physical, chemical, and microbiological. The pollution index formula was used to calculate, determine, and analyze the river water quality status. Samples at three locations were further tested with 13 additional chemical parameters due to potential contamination by other substances as they were located the closest to the production site and office area.FINDINGS: Sample analysis with six parameters showed a pollution index value of 0.558 or within the predefined standard at one location (SW6) and 1.080–2.721 at the other six locations, indicating slight pollution. Another test at three selected locations (i.e., SW1, SW2, and SW7) with 13 additional parameters increased the pollution index to 5.556–6.170 (moderate pollution). This status change was due to the high presence of nitrite and ammonia in the water samples.CONCLUSION: The oil and gas industry near the Cangkring River has strictly complied with the regulations in treating their produced water. However, it still contains a high amount of nitrite and ammonia, moderately polluting the river water. Therefore, it is necessary to regularly test the river water near oil and gas fields to ensure its quality and safety.
Environmental Engineering
M.R. Maulana; S. Saiful; Z.A. Muchlisin
Abstract
BACKGROUND AND OBJECTIVE: The occurrence of plastic waste pollution in waters has become a major issue globally. One of the waters which tend to be polluted with plastic waste such as bags, food wrappers, and unused fishing nets, is the Krueng Aceh River, which is located in the center of Banda Aceh ...
Read More
BACKGROUND AND OBJECTIVE: The occurrence of plastic waste pollution in waters has become a major issue globally. One of the waters which tend to be polluted with plastic waste such as bags, food wrappers, and unused fishing nets, is the Krueng Aceh River, which is located in the center of Banda Aceh city, Indonesia. Microplastics in the rivers potentially contaminate the fish through the food chains, and are then transferred to humans once consumed. The two species of fish that are frequently caught by fishermen in the Krueng Aceh River and consumed by the local people are mullet Mugil cephalus and bagok catfish Hexanematichthys sagor. Both have the potential of being contaminated with microplastics that enter the river. Therefore, this study aims to analyze the status of microplastic pollution in mullet M. cephalus and bagok catfish H. sagor harvested downstream of the Krueng Aceh River, Banda Aceh, Indonesia.METHODS: The fish samples were caught in three locations, namely in the river estuary, residential, and agricultural areas. A total of 50 mullets and 46 bagok catfish were employed for analysis. Microplastics were analyzed in the digestive tract using a microscope, while waste in the carcass was detected using the fourier transform infrared analysis.FINDINGS: In mullet, the highest number of microplastic particles were found in fish samples caught in river estuary (16 particles/fish on average), followed by the sample from residential areas (10 particles/fish on average). Meanwhile, the lowest abundance of microplastic was recorded in sample near agriculture areas (5 particles/gram body weight). In bagok catfish, microplastic abundance in samples from the river estuary and residential areas was almost the same, and it ranged from 7-8 particles/fish. The lowest particle number was in bagok catfish caught in the region near agricultural areas. This study indicated fiber as the most dominant microplastic in the two fish species at all sampling locations. It also had three colors in the alimentary tract of mullet and bagok catfish, namely red, blue, and black, which was predominant. The fourier transform infrared spectrum showed several wavenumber peaks signifying alkane compounds’ presence, which are microplastic characteristics. Based on the peak values, the presence of two polymer types was suspected, namely polyethylene, and polypropylene.CONCLUSION: Fiber and film microplastics were found in the digestive tract of mullet and bagok catfish, where the number of particles was most abundant in the mullet. The fourier transform infrared test was also detected the presence of microplastic pollutants in both species. This indicates that mullet and bagok catfish in Krueng Aceh River have been contaminated by microplastics and are not safe for consumption.
Environmental Engineering
L. Salvaraji; R. Avoi; M.S. Jeffree; S. Saupin; H.R. Toha; S.B. Shamsudin
Abstract
BACKGROUND AND OBJECTIVE: Air pollution is associated with population growth and economic advancement. Severe cardiovascular complications that require extensive medical service are aggravated by air pollutants. This study illustrates the trend and correlation of cardiovascular disease hospital admission ...
Read More
BACKGROUND AND OBJECTIVE: Air pollution is associated with population growth and economic advancement. Severe cardiovascular complications that require extensive medical service are aggravated by air pollutants. This study illustrates the trend and correlation of cardiovascular disease hospital admission with air pollutants in Sabah for the past 9 years (2010–2019). The additional information obtained from this study will be useful to enhance proper environmental management and reduce air pollution in the cities of Sabah.METHOD: Ecological study design was utilized with cardiovascular disease hospital admission and ambient air pollutants in Sabah retrospective data. Data were collected from four districts with established continuous air quality monitoring stations. Collected data were analysed spatially and statistically. Autoregressive integrated moving average modelling was implemented to forecast the cardiovascular disease hospital admission.FINDING: Kota Kinabalu recorded the highest hospital admissions for cardiovascular disease, followed by Sandakan, Tawau and Keningau. The cardiovascular disease hospital admission prevalence rate in Kota Kinabalu was 12.45 per 1,000 population, followed by Sandakan, Tawau and Keningau (4.54; 4.18; and 5.88 per 1,000 population) in 2019. The cardiovascular hospital admissions increased in Kota Kinabalu, Sandakan and Tawau. The nitrogen dioxide (<0.04 ppm), carbon monoxide (<9 ppm), ozone (<0.05 ppm) and PM10 (<100 µg/m3) gases detected are below the national standard limit levels. In the later years of the series, the ozone and fine particulate gases intensify. Carbon monoxide has the highest positive correlation with cardiovascular disease hospital admission compared to other air pollutants. The autoregressive integrated moving average (0,1,1) with carbon monoxide and ozone as external regressors is the model with minimum Akaike information criterion.CONCLUSION: The carbon monoxide concentration in ambient air illustrates a potential risk for the increasing cardiovascular disease hospital admission number in Sabah. The study findings provide evidence-based source for the healthcare management team, policymakers, and community to sustain clean and safe ambient air.
Environmental Engineering
F.M. Torres-Bejarano; M. Verbel-Escobar; M.C. Camila Atencia-Osorio
Abstract
BACKGROUND AND OBJECTIVES: One of the negative impacts of polluting activities on aquatic ecosystems is the loss of its natural self-purification ability, for this reason, the purpose of this research was to evaluate the Sinú river capacity to assimilate wastewater discharges.METHODS: Monitoring ...
Read More
BACKGROUND AND OBJECTIVES: One of the negative impacts of polluting activities on aquatic ecosystems is the loss of its natural self-purification ability, for this reason, the purpose of this research was to evaluate the Sinú river capacity to assimilate wastewater discharges.METHODS: Monitoring of several water quality parameters was carried out in the river at different seasons and a numerical method was used to simulate different scenarios through the Environmental Fluid Dynamics Code model. The model calibration process was tested applying the Root Mean Square Error and after calibrating the model, scenarios of increase and decrease of discharge concentrations and flows, and river flows were simulated. Finally, the results were compared to water quality reference limits.FINDINGS: Results show that the model accurately represented the real conditions of the studied river section for all the evaluated parameters. Also, assimilative capacity was affected mostly by the scenario in which the river flow was decreased by 50%, and the flows and discharges concentrations were increased five times; causing parameters such as ammonia nitrogen, chemical oxygen demand, phosphates, and total nitrogen, to exceed the established reference limits with maximum concentrations of 2.7 mg/L, 30.9mg/L, 0.98 mg/L and 6.3 mg/L; respectively. Higher concentrations of water quality parameters were mostly found in the dry season since lower velocities and river flows promote less pollutants mixing and dilution processes.CONCLUSION: The model spatiotemporal simulations showed the effect of the wastewater discharges on the Sinú River assimilative capacity and made it possible to find those scenarios where water quality parameters exceeded the reference limits, becoming an essential tool for water management and the development of strong water quality objectives by stakeholders and environmental authorities.
Environmental Engineering
M. Dede; S.B. Wibowo; Y. Prasetyo; I.W. Nurani; P.B. Setyowati; S. Sunardi
Abstract
BACKGROUND AND OBJECTIVES: Water resources carrying capacity is dynamic and can be influenced by catastrophic volcanic eruptions. The eruption of Mount Merapi in 2010 changed the landscape and community livelihoods due to the redistribution of a large volume of volcanic materials. This study aims to ...
Read More
BACKGROUND AND OBJECTIVES: Water resources carrying capacity is dynamic and can be influenced by catastrophic volcanic eruptions. The eruption of Mount Merapi in 2010 changed the landscape and community livelihoods due to the redistribution of a large volume of volcanic materials. This study aims to analyze water resources carrying capacity before and after the major 2010 eruption of Mount Merapi.METHODS: The value of water resources carrying capacity is derived from that of water availability and the domestic water needs per capita per year. The model uses a grid of 100 x 100 meter cells to determine the spatial distribution of water resources carrying capacity in Krasak watershed, and this analysis considers the years 2008, before the eruption, and 2021, after the eruption. The population distribution data have been previously mapped by referring to statistical data and land use at the village level, while water availability is calculated considering rainfall, potential evaporation rate, and runoff.FINDINGS: Water resources carrying capacity in Krasak watershed has undergone changes related to the distribution of volcanic material and human activities. The water resources carrying capacity for both periods experienced a surplus, although there has been an average decrease of 331.50 cubic meters per year for each grid cell. Water resources carrying capacity analysis shows a decline, especially in the midstream and downstream. Based on T-Test, there are significant changes in the water resources carrying capacity at 2008 and 2021 (p-value 0.047 and 95% confidence level).CONCLUSION: Water resources carrying capacity increased only in some locations that occurred ecosystem succession after the eruption, although areas near the peak are decreased by sand and stone mining. The spatial-gridded model proved capable of analyzing this phenomenon.
Environmental Engineering
E. Fares; B. Aissa; R.J. Isaifan
Abstract
Background and objectives: Global energy needs have gradually shifted toward photovoltaic solar energy, especially in the Gulf region because of the high solar-irradiance potential. However, one of the main challenges for this technology in the region is soiling, which has been reported to degrade the ...
Read More
Background and objectives: Global energy needs have gradually shifted toward photovoltaic solar energy, especially in the Gulf region because of the high solar-irradiance potential. However, one of the main challenges for this technology in the region is soiling, which has been reported to degrade the power output of photovoltaic modules significantly. Anti-soiling coatings are promising technologies to minimize the effect of dust on photovoltaic solar panels. Accordingly, this study aimed to synthesize aluminum, zinc, titanium, and tin oxides using mixed-based and nanoparticle-based precursors through inkjet printing techniques and investigate their potential in anti-soiling applications for PV panels.Methods: Four metal oxides, namely, aluminum, zinc, titanium, and tin oxides, were synthesized and deposited using the inkjet printing technique for anti-soiling application. Ultraviolet-visible spectroscopy, field emission scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, and contact angle measurements were performed to characterize these thin films.Finding: The optical transmittance of the substrate using the nanoparticle ink revealed better optical properties than that using the mixed-based ink. Compared with nanoparticle samples, a homogeneous crack and a defect-free layer were observed with dense nanoparticles in all mixed inks (except for aluminum oxide ink). The contact angles indicated that the synthesized films were super-hydrophilic/hydrophilic coatings. The results of the outdoor testing revealed that up to 60% less dust was deposited on the best-performing film (aluminum oxide mixed-based ink) compared with bare glass. Conclusion: The outdoor experiment revealed that mixed-based thin films were better in reducing dust deposition than nanoparticle-based thin films and bare glass. This enhancement might be due to the decreased antireflection property along with a morphological contribution related to the presence of nanoparticle voids, which reduce the spectra scattering and minimize its deterioration, thus demonstrating better anti-soiling properties. The results of the outdoor test revealed that aluminum, zinc, and titanium oxides are promising materials for anti-soiling coating applications for both ink types. However, tin oxide coatings are not recommended for anti-soiling applications, as they showed the highest dust deposition rate near the bare glass performance.
Environmental Engineering
Suhaemi .; D.G. Bengen; C.P.H. Simanjuntak; A.F. Koropitan
Abstract
BACKGROUND AND OBJECTIVES: The Misool Islands are lined up regularly from west to east, the southern part of Raja Ampat Archipelago, Papua - Indonesia. The geomorphology is distinctive, and the coral reef substrate causes turbulence. Misool waters are located in the Papuan bird's head seascape, passed ...
Read More
BACKGROUND AND OBJECTIVES: The Misool Islands are lined up regularly from west to east, the southern part of Raja Ampat Archipelago, Papua - Indonesia. The geomorphology is distinctive, and the coral reef substrate causes turbulence. Misool waters are located in the Papuan bird's head seascape, passed by Pacific water masses. The assessment status of Misool waters as a conservation area does not include hydrodynamic aspects in the decision processes. The present study is fundamental for determining and changing essential areas for conservation. The main objective of this study is to the pattern of hydrodynamic processes and investigate the features of the water mass in the Misool waters.METHODS: An acoustic doppler current profiler was deployed to measure currents every 15 minutes for ten water column layers. Investigation of waters characteristics was using Conductivity-Temperature-Depth equipment. A three-dimensional computational model was performed using MIKE3.FINDINGS: The water mass around the Misool Islands are more influenced by the local oceanographic processes than the water masses from the Pacific Ocean. The study site is characterized by the mixed tide, prevalence to semi-diurnal based on observational tidal data. Wind and baroclinic properties generate non-significant currents, resulting in low horizontal and vertical stratification. Intensification of tidal currents occurs along the shallow part in northeastern and part of the channel between Misool Islands and the mainland of Papua.CONCLUSION: The interaction of barotropic tides, geomorphology, and coral reef triggers the unstratified water mass. Strong currents and turbulence on the northeast side produce homogeneous waters. The water mass in Misool waters is originated from the local dynamic.
Environmental Engineering
S. Rahman; M. Ramli; F. Arnia; R. Muharar; M. Ikhwan; S. Munzir
Abstract
BACKGROUND AND OBJECTIVES: The increase in the number of vehicles has several negative impacts, including traffic congestion, air pollution, noise levels, and the availability of parking spaces. Drivers looking for parking spaces can cause traffic jams and air pollution. The solution offered at this ...
Read More
BACKGROUND AND OBJECTIVES: The increase in the number of vehicles has several negative impacts, including traffic congestion, air pollution, noise levels, and the availability of parking spaces. Drivers looking for parking spaces can cause traffic jams and air pollution. The solution offered at this time is the development of a smart parking system to overcome these problems. The smart parking system offers a parking availability information feature in a parking area to break up congestion in the parking space. Deep learning is a successful method to solve parking space classification problems. It is known that this method requires a large computational process. Th aims of this study are to modified the architecture of Convolutional Neural Networks, part of deep learning to classify parking spaces. Modification of the Convolutional Neural Networks architecture is assumed to increase the work efficiency of the smart parking system in processing parking availability information.METHODS: Research is focusing on developing parking space classification techniques using camera sensors due to the rapid advancement of technology and algorithms in computer vision. The input image has 3x3 dimensions. The first convolution layer accepts the input image and converts it into 56x56 dimensions. The second convolution layer is composed in the same way as the first layer with dimensions of 25x25. The third convolution layer employs a 3 x 3 filter matrix with padding of up to 15 and converts it into 10x10 dimensions. The fourth layer is composed in the same way as the third layer, but with the addition of maximum pooling. The software used in the test is Python with a Python framework.FINDINGS: The proposed architecture is the Efficient Parking Network or EfficientParkingNet. It can be shown that this architecture is more efficient in classifying parking spaces compared to some other architectures, such as the mini–Alex Network (mAlexnet) and the Grassmannian Deep Stacking Network with Illumination Correction (GDSN-IC). EfficientParkingNet has not been able to pass the accuracy of Yolo Mobile Network (Yolo+MobileNet). Furthermore, Yolo+MobileNet has so many parameters that it cannot be used on low computing devices. Selection of EfficientParkingNet as a lightweight architecture tailored to the needs of use. EfficientParkingNet's lightweight computing architecture can increase the speed of information on parking availability to users.CONCLUSION: EfficientParkingNet is more efficient in determining the availability of parking spaces compared to mAlexnet, but still cannot match Yolo+MobileNet. Based on the number of parameters, EfficientParkingNet uses half of the number of parameters of mAlexnet and is much smaller than Yolo+MobileNet. EfficientParkingNet has an accuracy rate of 98.44% for the National Research Council parking dataset and higher than other architectures. EfficientParkingNet is suitable for use in parking systems with low computing devices such as the Raspberry Pi because of the small number of parameters.
Environmental Engineering
G.R. Puno; R.C.C. Puno; I.V. Maghuyop
Abstract
BACKGROUND AND OBJECTIVES: Fine topographic information is a key input parameter for a detailed flood simulation and mapping. This study aimed to compare the accuracy statistics of the flood models developed using the digital elevation datasets with different resolutions from the light detection and ...
Read More
BACKGROUND AND OBJECTIVES: Fine topographic information is a key input parameter for a detailed flood simulation and mapping. This study aimed to compare the accuracy statistics of the flood models developed using the digital elevation datasets with different resolutions from the light detection and ranging and interferometric synthetic aperture radar systems.METHODS: The study applied the Hydrologic Engineering Center-Hydrologic Modeling System and Hydrologic Engineering Center-River Analysis System models workable within the geographic information system to simulate and map flood hazards in Maapag Watershed. The models’ validity and accuracy were tested using the confusion error matrix, f-measurement, and the root means square error statistics.FINDINGS: Results show that using the light detection and ranging dataset, the model is accurate at 88%, 0.61, and 0.41; while using the interferometric synthetic aperture radar dataset, the model is accurate at 76%, 0.34, 0.53; for the error matrix, f-measurement, and root mean square error; respectively.CONCLUSION: The model developed using the light detection and ranging dataset showed higher accuracy than the model developed using the interferometric synthetic aperture radar. Nevertheless, the latter can be used for flood simulation and mapping as an alternative to the former considering the cost of model implementation and the smaller degree of accuracy residual error. Hence, flood modelers particularly from local authorities prefer to use coarser datasets to optimize the budget for flood simulation and mapping undertakings.
Environmental Engineering
M. Ramli; M. Mardlijah; M. Ikhwan; K. Umam
Abstract
BACKGROUND AND OBJECTIVES: A solar panel is a device that converts solar rays into electricity. It is a step to reduce emissions from fossil energy, which is to replace it with renewable energy. It requires a control system to ensure that the position of the solar panel is always perpendicular to the ...
Read More
BACKGROUND AND OBJECTIVES: A solar panel is a device that converts solar rays into electricity. It is a step to reduce emissions from fossil energy, which is to replace it with renewable energy. It requires a control system to ensure that the position of the solar panel is always perpendicular to the sun''s rays. This study aims to modify the fuzzy set based on fuzzy entropy in the control system that has been developed. The modifications made are expected to increase the efficiency of solar panels in harvesting energy.METHODS: Type II fuzzy sliding mode control is used, along with a modified fuzzy set based on the entropy value. Before modification, the system containing the fuzzy set generates a histogram of entropy and voltage performance, which is the initial value and the comparison value. The algorithm alters the footprint of the uncertainty limit. This change results in a new fuzzy set, which results in a new histogram and voltage. The final step is to compare the initial and final parameters based on the results of the modifications.FINDINGS: The solar panels require only 7.3x10-5 degrees of movement per second. This is a very slow movement for a dc motor with a maximum voltage of 12 volts. The simulation produced a stable speed of 7.297x10-5 on the unmodified system and 7.295x10-5 on the modified system. The modified system experiences a slight delay towards the stable point because the fuzzy entropy method reduces the dominance of set point positions in the system.CONCLUSION: The modified fuzzy set is good at controlling the solar panel driving motor based on the output voltage value. On both controllers under consideration, the voltages follow the same pattern. However, it experienced a control mismatch at the point towards the set point. Finally, by changing the foot of uncertainty and adjusting it proportionally according to control needs, the control system based on fuzzy sets with fuzzy entropy can be further developed.
Environmental Engineering
E.N. Hidayah; R.B. Pachwarya; O.H. Cahyonugroho
Abstract
BACKGROUND AND OBJECTIVES: The existence of organic matter is one of the main issues for wastewater reclamation since chlorination is applied most frequently before use wastewater reclamation for many purposes. One of the eco-friendly and effective methods is using innovative material through resin immobilized ...
Read More
BACKGROUND AND OBJECTIVES: The existence of organic matter is one of the main issues for wastewater reclamation since chlorination is applied most frequently before use wastewater reclamation for many purposes. One of the eco-friendly and effective methods is using innovative material through resin immobilized heterogeneous photocatalyst, which is based on the principle of advanced oxidation processes. Resin immobilized photocatalyst has been using for pollutant reduction, however lack of studies focused on dissolved effluent organic matter and its impact on the formation carcinogenic as by-product of water or wastewater treatment. This study aims to characterize organic matter by resin immobilized photocatalyzed titanium dioxide and zinc oxide and to determine its effectiveness in removing organic matter and potential for disinfection by-products in treated wastewater compare with resin only.METHODS: The bulk parameters, including total organic carbon, aromatic organic carbon as ultraviolet at 254 nm wavelength and specific ultraviolet absorbance value, and disinfection by-products formation potential, including trihalomethanes and haloacetic acids concentration was measured.FINDINGS: The results present that all materials could remove organic carbon in the range 58.18% - 93.45%, aromatic organic carbon removal 48.77% - 76.51%, and specific ultraviolet absorbance value decreased into less than 2 L/mg-m after longer contact time. Disinfection by-products formation potential concentration removal decreased and indicated the consistency results with bulk parameters removal. Resin immobilized photocatalyzed zinc oxide performed a higher efficiency removal than resin immobilized photocatalyzed titanium dioxide and resin only.CONCLUSION: This study exhibited the performance of resin immobilized photocatalyst with titanium dioxide and zinc oxide in removing dissolved organic matter and to control the formation of disinfection by-products. A combination between bulk parameters and disinfection by-products formation potential removal concluded that the aromatic structure, was mainly haloacetic acids precursors, while the non-aromatic organic fraction was probably trihalomethanes precursors.
Environmental Engineering
M. D. Enriquez; R. M. Tanhueco
Abstract
BACKGROUND AND OBJECTIVES: Safeguarding water resources became a major concern in many parts of the world as it aims to provide safe and healthy water for humans. Water quality monitoring is a popular tool in ensuring water quality is safe and within the allowable limits and standards for the health ...
Read More
BACKGROUND AND OBJECTIVES: Safeguarding water resources became a major concern in many parts of the world as it aims to provide safe and healthy water for humans. Water quality monitoring is a popular tool in ensuring water quality is safe and within the allowable limits and standards for the health of the community. To provide interventions and strategies for the rehabilitation, a water quality monitoring plan was conducted to describe the water quality and the classification of the river.METHODS: This study conducted an environmental analysis to determine existing conditions and processes in the surrounding environment such as the land use, drainage pattern, reconnaissance survey of the river, and a key interview to describe the barangay profile and the community's water use and practices. The water quality monitoring covers the evaluation of ten water quality parameters: temperature, pH, dissolved oxygen, total dissolved solids, total suspended solids, phosphate, nitrate, oil and grease, chloride, and E. coli.FINDINGS: Results of the study presents the water quality against the ten water quality criteria. Phosphate measured on four stations ranges between 2.40-4.50 mg/L exceeding the allowable 0.50mg/L; the oil and grease exceeds the standards 2 mg/L with measured values of 2.40-4.60 mg/L in stations 2, 3, and 4; while measured chloride in all stations prove that the water is salty with values exceeding the freshwater requirement of 250mg/L; and the measured TSS in stations 2, 3 and 4 ranges from 32.30 to 49.3 mg/L exceeds the standards of 30mg/L. E. coli was also detected in water samples collected in all sampling stations. The computed water quality index of 39.02 described water as poor, always impaired, and threatened by the surrounding environment. CONCLUSION: The measured concentrations for phosphate, oil/ grease, chloride, and TSS exceeds the water quality requirement suggesting that the water is contaminated. The E. coli detected in all water samples, further recommends prohibition of recreational activities to avoid accidental intakes and skin contact on the polluted water. The existing activities in the surrounding residential, commercial and agricultural areas contributed to water contamination as aggravated by the unreliable drainage system, absence of proper sanitation facilities, and collection and disposal behavior of the community. From this, a scientific basis can be drawn on how the river can be rehabilitated and protected and serve as guide for policymakers and water managers on implementing strategies to achieve sustainable water resources.
Environmental Engineering
N. Robinah; A. Safiki; O. Thomas; B. Annette
Abstract
BACKGROUND AND OBJECTIVES: The effect of infrastructure equipment is taking a toll on the health and economic well-being of residents all around the world. This is mainly because it contributes to ambient air pollution, noise, and vibration in the surroundings. The study aimed at analyzing the ...
Read More
BACKGROUND AND OBJECTIVES: The effect of infrastructure equipment is taking a toll on the health and economic well-being of residents all around the world. This is mainly because it contributes to ambient air pollution, noise, and vibration in the surroundings. The study aimed at analyzing the effects of the road infrastructure equipment on the surroundings in Uganda. The emissions of carbon dioxide, carbon monoxide, nitrogen dioxide, hydrocarbons, and particulate matter were analyzed.METHODS: Six road infrastructure equipment were sampled consisting of an excavator, roller, grader, concrete mixer, tamper, and wheel loader, obtained from a case study project in Kampala city, Uganda. The diesel exhaust air emissions were computed and analyzed using the emissions rate equation model for non-road equipment, developed by Environmental Protection Agency. This was based on the horsepower and power rating of the equipment. Noise and vibrations levels were obtained using a sound level meter, seismometers, and accelerators, while following the National Environment Regulations.FINDINGS: The greenhouse gas of carbon dioxide was the most predominant accounting for 84.1 percent of the total emissions. The grader was the highest emitter of this greenhouse gas, at 1,531.5 g/h, representing 37.1%. The lowest air pollutant emission was nitrogen dioxide at 1.43 g/h for the concrete mixer, representing 1.4%. Overall, the equipment emitted more greenhouse gases than air criteria pollutants at 88.8% and 11.2% respectively. The highest criteria air pollutant was particulate matter at 100.5 g/h, emitted by the grader. Most of the emissions met the standards stipulated by Environmental Protection Agency, for reducing emissions back to the environment, except particulate matter. However, the concentrations of some pollutants like carbon monoxide and nitrogen dioxide did not satisfy the limits required for ambient air quality that is safe for workers. All the equipment had noise levels way above the recommended 70.00 decibel, except for the wheel loader. Only the excavator produced vibrations higher than permissible vibration limit by 4%.CONCLUSION: The criteria air pollutants of carbon monoxide, nitrogen dioxide, and particulate matter emitted by the equipment were all not safe to the workers. They exceeded the permissible limits of 50 ppm, 5 ppm, and 0.02 g/kW/h respectively. This partly shows why ambient air pollution had been reported in urban centers in Uganda. The study shows the need for strengthening the regulations and monitoring of the construction equipment being used, in order to protect the surroundings.