Environmental Engineering
R. Abdallat; A.N. Bdour; A. Abu Haifa; F.F. Al-Rawash; L. Almakhadmeh; S. Hazaimeh
Abstract
BACKGROUND AND OBJECTIVES: Jordan's limited water resources have reduced daily water consumption, leading to a highly concentrated greywater production rate of 54 million cubic meters per year. The presence of nitrate ions, total dissolved solids, total suspended solids, chemical oxygen demand, and biological ...
Read More
BACKGROUND AND OBJECTIVES: Jordan's limited water resources have reduced daily water consumption, leading to a highly concentrated greywater production rate of 54 million cubic meters per year. The presence of nitrate ions, total dissolved solids, total suspended solids, chemical oxygen demand, and biological oxygen demand in greywater poses excellent environmental and health risks when disposed untreated. Water scarcity directly impacts water and food security and is expected to intensify at the current resources management practices. The significance of the current and predictable water shortage in the context of sustainable development and the presence of new technologies brought further attention to utilizing non-conventional water sources. Reclamation of treated wastewater, greywater, brackish, and seawater desalination is Jordan's water budget's only non-conventional water resource. This study aims to address Jordan's water scarcity crisis by developing a low-energy, solar-powered greywater filtration system using natural materials while ensuring compliance with Jordanian standards for safe agricultural applications.METHODS: Several treatment methods have been proposed; however, most of these systems require high to medium energy levels for treatment purposes. Hence, the running cost of the system is relatively high. To address this issue, a four-stage, low-energy, green, and decentralized solar filtration system for greywater treatment has been developed, which uses natural materials available in Jordan and activated carbon to reduce organic and solids content and remove pathogens. The system also uses hot water generated by a Photovoltaic solar system to sanitize the greywater, a novel concept of approach for sanitization. This innovative system is powered entirely by solar energy and can be installed in individual homes.FINDINGS: The results of the developed solar filtration system were very efficient in reducing turbidity, chemical oxygen demand, and Escherichia coli removal: 92, 95, and 100 percent, respectively. Furthermore, the system showed a high potential for total coliforms and Escherichia coli inactivation, reaching 4.64 and 3.15 log units, respectively. Product water meets Jordan standards, ensuring safe reuse for irrigation applications. The findings of this study highlight the satisfactory performance of the developed greywater solar filtration setup. The economic feasibility analysis demonstrates that the proposed system is economically viable and financially sound. The system’s reliance on solar energy and the absence of consumables contribute to its sustainability. They are addressing sustainable practices in greywater treatment in addition to water scarcity concerns.CONCLUSION: The treated greywater, obtained through the series of treatment steps, including solar disinfection, successfully met the Jordanian standards for safe reuse. The substantial reduction of Escherichia coli and total coliforms to acceptable levels demonstrates the treatment system's effectiveness in generating pathogen-free greywater, suitable for a wide range of applications. The study concludes that the solar filtration setup consistently delivers high-quality, pathogen-free greywater, meeting stringent regulatory requirements. This innovative, sustainable system offers a viable solution to Jordan’s water scarcity, introducing a new non-conventional water resource that requires no consumables (non-chemical, non-hazardous materials), thereby addressing sustainability concerns in greywater treatment.
Environmental Engineering
D.S.I. Sondakh; F.R. Tulungen; J.K. Kampilong; F.S.J. Rumondor; Y.S. Kawuwung; E.P. Sanggelorang
Abstract
BACKGROUND AND OBJECTIVES: Anthropogenic activities in livestock sectors are responsible for emitting substantial amounts of greenhouse gases, including carbon dioxide, methane, and dinitrous oxide, into the atmosphere, thereby contributing to climate change. The impact of these gases can be reduced ...
Read More
BACKGROUND AND OBJECTIVES: Anthropogenic activities in livestock sectors are responsible for emitting substantial amounts of greenhouse gases, including carbon dioxide, methane, and dinitrous oxide, into the atmosphere, thereby contributing to climate change. The impact of these gases can be reduced through effective mitigation and adaptation efforts. This study aimed to estimate the livestock greenhouse gas emissions in Minahasa District, Indonesia; identify the greenhouse gas sources and distribution; and provide feasible mitigation options.METHODS: This study used mixed methods to collect primary and secondary data from breeders and stakeholders in the Minahasa Regency. Interviews and questionnaires were also conducted, and the local government office provided secondary data. Breeders from various groups who lived in 25 different districts participated in this study, and the data analysis techniques used a Tier 1 model to process the data. The participants were included in focus group discussion activities for qualitative data collection to formulate potential mitigation strategies.FINDINGS: The livestock sector emitted 48.83 gigagrams of carbon dioxide equivalent in 2021, and this was expected to increase by 24.98 percent in 2022, resulting in a total emission of 65.09 gigagrams of carbon dioxide equivalent. The sector also experienced a steady rise in emissions since 2010, with an average annual increase of 3.17 percent. The emissions were primarily composed of methane and dinitrous oxide, which accounted for 64.68 and 0.41 gigagrams carbon dioxide equivalent, respectively. In terms of livestock greenhouse gas distribution, the Sonder District produced 13.98 percent of the emission at 8.77 gigagrams of carbon dioxide equivalent. The main emissions resulted from methane manure management and enteric fermentation at 84.53 and 15.23 percent (7.41 and 1.34 gigagrams of carbon dioxide equivalent, respectively), while the remaining was composed of dinitrous oxide gas. In Kawangkoan District, the greenhouse gas emissions were dominated by methane from enteric fermentation and manure management, which accounted for 15.23 and 20.05 percent (5.63 and 1.43 gigagrams of carbon dioxide equivalent). In addition, the total emission accounted for 11.33 percent at 7.11 gigagrams of carbon dioxide equivalent.CONCLUSION: The study produced an estimate of greenhouse gases from the livestock sector in the Minahasa Regency. During the studied period (2010-2022), the total greenhouse gas emissions exhibited an average annual increase of 3.17 percent. In 2022, the emissions consisted of methane and dinitrous oxide, with respective contributions of 99.38 percent per year and 0.62. Based on the spatial mapping, the Sonder District produced the largest cumulative emissions, primarily driven by emissions from animal waste management. Conversely, the Kawangkoan District dominated emissions stemming from the enteric fermentation of ruminant animals. These findings imply that all stakeholders in the Minahasa Regency should prioritize efforts to implement adaptation and mitigation programs to reduce these impacts.
Environmental Engineering
M.K. Rosyidy; E. Frimawaty
Abstract
BACKGROUND AND OBJECTIVES: Oil palm is one of the crops that has an essential role in Indonesia's engineering field. This condition has led to oil palm plantation intensification, which has been extensive to deforestation in Indonesia, including Jambi province. The main aim of this investigation is to ...
Read More
BACKGROUND AND OBJECTIVES: Oil palm is one of the crops that has an essential role in Indonesia's engineering field. This condition has led to oil palm plantation intensification, which has been extensive to deforestation in Indonesia, including Jambi province. The main aim of this investigation is to evaluate deforestation and land change affected by oil palm expansion conducted by smallholders, which influences environmental change using remote sensing combined with a geographic information system approach. This study utilizes the change of oil Palm in spatial-temporal (spatial and temporal) in Jambi province related to land change and environmental impacts.METHODS: This research uses data from Landsat 8 satellite imagery. The land cover classification was done using the Maximum Likelihood approach, while the overlay method was used for land change analysis. Accuracy assessment of classification results uses a confusion matrix taking into account overall accuracy and Kappa Hat. Within the field observation, the validation class is the oil palm class, using documentation and plotting using the global positioning system, and other classes are validated using the Region of Interest collected through Google Earth. This research uses Aviation Reconnaissance Coverage Geographic Information System 10.1 software to transform the categorization results into vector data. FINDINGS: This study shows that the landcover classification results have high accuracy. This study shows that the area of oil palm land from 2015 to 2019 has increased along with a decrease in land used, such as forests and others. The area of oil palm land 2014 was 2,071,345 hectares, while the area in 2019 was 2,110,545 hectares. In other words, there was an increase in land cover due to land clearing and deforestation, namely 39.2 thousand hectares. The built-up area has also increased in the last five years, namely 165,358 hectares. The number of oil palm plantations tends to be greater in relatively plain areas compared to areas with relatively high altitudes and steep slopes. Small farmers'''' area of oil palm land increased by 1,000 hectares in 2014-2018. The most significant increase occurred in 2016-2017, around 38,889 hectares.CONCLUSION: This study demonstrates that using Landsat 8 imagery combined with GIS approaches provides the optimal method for an in-depth analysis of land cover changes related to oil palm expansion and land clearing that occur on a broader spatial scale and temporal in Jambi Province. This study shows that smallholder oil palm plantations in the Jambi region play an important role in increasing deforestation in Jambi Province, especially in Indonesia. This study is expected to serve as a valuable resource for informing policy decisions aimed at addressing the issue of deforestation resulting from the prospective increase of oil palm crops in the forthcoming period.
Environmental Engineering
D. Utari; N.I. Hawa; G. Fizumli; H. Agustina
Abstract
BACKGROUND AND OBJECTIVES: Plastic pollution is increasing globally along with the growing consumption patterns of the global community, leading to practicality (social behavior). The primary contributors to pollution are single-use plastic (SUP) items and inadequate waste management techniques. This ...
Read More
BACKGROUND AND OBJECTIVES: Plastic pollution is increasing globally along with the growing consumption patterns of the global community, leading to practicality (social behavior). The primary contributors to pollution are single-use plastic (SUP) items and inadequate waste management techniques. This research attempts to examine local communities’ determinants and behavioral patterns regarding plastic waste management.METHODS: This cross-sectional analytical study includes 195 respondents and conducted at Antang Lake, Makassar. The social sciences statistical package version 26 was used to perform chi-square tests and multiple regression analysis to examine the main elements influencing individual behavior toward plastic waste management. A survey instrument was provided to participants for data collection.FINDINGS: The chi-square test results show that the knowledge variable has a statistically significant relationship with plastic waste management behavior at home, with a test statistical value of 0.002. Respondents with limited knowledge are 2.603 times more likely to have poor household plastic waste management behavior than those with substantial knowledge. The knowledge variable is also significantly related to household plastic waste management behavior simultaneously with a statistical test value of 0.000, showing a strong relationship. This variable influences 11.8 percent of the behavior in question. Attitude and action variables do not have a significant relationship partially or simultaneously with household plastic waste management behavior.CONCLUSION: Increased plastic consumption has led to microplastic pollution, environmental damage, and deteriorating health conditions. Thus, intervention is required to improve optimal waste management behavior in the community. Increasing awareness about environmental management and educating the public on the impact of microplastics on family health can contribute to enhanced knowledge awareness. This research aims encourage greater awareness of environmental condition to minimize toxicity resulting from the negative impacts of plastic waste.
Environmental Engineering
N. Emalya; Y Yunardi; E. Munawar; S. Suhendrayatna; T. Tarmizi
Abstract
BACKGROUND AND OBJECTIVES: The utilization of stabilization pond system for landfill leachate treatment is hindered by its requirement for expansive land areas and extended retention periods. Although the system effectively removes organic compounds, its ability to eliminate nutrients such as nitrogen ...
Read More
BACKGROUND AND OBJECTIVES: The utilization of stabilization pond system for landfill leachate treatment is hindered by its requirement for expansive land areas and extended retention periods. Although the system effectively removes organic compounds, its ability to eliminate nutrients such as nitrogen and phosphorus is comparatively limited. Consequently, the leachate subjected to treatment often falls short of meeting the mandated standards for effluent quality. In response to this challenge, a research study was undertaken to investigate the potential of utilizing a consortium comprising microalgae and bacteria in the treatment of landfill leachate.METHODS: The microalgae, bacteria, and leachate utilized in this study were sourced from a leachate treatment facility located at the Aceh regional domestic waste management unit in Blang Bintang, Aceh Besar, Indonesia. The two glass photobioreactors were operated batch-wise, where the first was provided with a combination of air and carbon dioxide, and the other was solely exposed to air. The pollutant removal efficacy in the leachate effluent was assessed through the measurements of chemical oxygen demand, ammonia, nitrate, nitrite, and phosphate concentrations. Subsequently, macroscopic identification of microalgae and bacteria species was also conducted.FINDING: Utilizing a consortium of microalgae and bacteria has demonstrated efficacy in treating leachate, resulting in a notable reduction of contaminants within the effluent. The symbiotic association between microalgae and bacteria in the context of leachate waste treatment is evident. The bacteria’s metabolic actions result in carbon dioxide emission, which subsequently serves as a substrate for the photosynthetic activities of the microalgae. The microalgae facilitate the transfer of oxygen, produced through photosynthesis, to the bacteria to support their metabolic processes. Therefore, introducing exogenous carbon dioxide to the consortium yields minimal discernible effects, given that the bacteria adequately fulfill the carbon dioxide requirements of the microalgae. This discovery enhances the efficacy of leachate treatment techniques by leveraging the utilization of pre-existing mixed cultures of microalgae and bacteria found in leachate facilities.CONCLUSION: This study evaluated the microalgae-bacteria consortium’s effectiveness in reducing leachate pollutants. The consortium exhibited a significant capability, achieving a 75 percent reduction in chemical oxygen demand and successfully eliminating a range of contaminants. Additionally, it demonstrated effective removal of nitrogen compounds such as ammonia, nitrate, and nitrite, with removal rates reaching 75 percent. Notably, the consortium showed a 99 percent removal rate for phosphate compounds. Even with the introduction of carbon dioxide, the pollutant removal remained consistently high, suggesting that the addition of carbon dioxide did not significantly influence the overall process.
Environmental Engineering
O. Setiawan; H.Y.S.H. Nugroho; N. Wahyuningrum; D. Auliyani; K.S. Hardjo
Abstract
BACKGROUND AND OBJECTIVES: Micro-hydropower plants are significant contributors of electricity and clean source of renewable energy. A nationwide or large watershed inventory of potential micro hydropower dam sites is lacking, hindering micro-hydropower development. Traditional ground survey approaches ...
Read More
BACKGROUND AND OBJECTIVES: Micro-hydropower plants are significant contributors of electricity and clean source of renewable energy. A nationwide or large watershed inventory of potential micro hydropower dam sites is lacking, hindering micro-hydropower development. Traditional ground survey approaches for locating micro-hydropower dam sites are expensive, time-consuming, laborious, and vulnerable to inconsistency. Geographic information system frameworks are commonly used, and they provide significant value to hydropower evaluation. A suitability approach for dam site identification is important in supporting the optimization of hydropower utilization in the context of watershed management and in eliminating the inconsistency of conventional approaches. The objective of this study was to identify potential sites for micro-hydropower dams on the basis of various parameters by using a suitability modeling approach based on geographic information system.METHODS: The Saddang Watershed was chosen as the study area, it is located in the South Sulawesi and West Sulawesi Provinces of Indonesia, and it is an example of a large watershed. The analytical hierarchy process was used for criterion weighting and to create a dam suitability index map based on the following criteria: geomorphometry, geology, rainfall, soil texture, and land use land cover. The developed dam suitability index map was validated by comparing it with existing dams by using the receiver operating characteristic curve. The identification of potential micro-hydropower dam sites involved overlay and query methods. It considers dam suitability index, proximity from road and settlement, existence of conservation forest, and the potential hydraulic head.FINDINGS: The dam suitability index map with five suitability classes was obtained, with the high and very high suitability indexes extending to 8.7 percent of the study area. These classes were typified by high drainage density, topographic wetness index, stream power index, low vegetation cover, moderate slope, situated on second or higher stream orders, normal temporal distribution of rainfall, and sandy clay loam soil texture with igneous and sedimentary complex rocks. The developed suitability model was sufficiently effective in determining dam suitability index, as indicated by a value greater than 0.9 of the area under the curve. A total of 635 potential dam locations were identified with high and very high suitability indexes, located on first or second stream orders, within a 4,000 m radius of roads and settlements, outside conservation forest areas, and with a potential hydraulic head greater than 20 meter.CONCLUSION: Integrating a dam suitability index map and restriction factors into a geographic information system framework, enabled a robust analysis for identifying potential sites of micro-hydropower dams. The proposed approach is expected to contribute to the advancement of renewable energy initiatives and water resource management within large watersheds. It is also expected to serve as a valuable resource for policymakers involved in the implementation of micro-hydropower projects and watershed management to support the achievement of renewable energy development targets.
Environmental Engineering
E.S. Siregar; S.U. Sentosa; A. Satrianto
Abstract
BACKGROUND AND OBJECTIVES: This study aims to examine the endogenous variable, low-carbon development, and valuate its influencing factors, given its pivotal role in environmental protection amid climate change concerns and economic growth. Low carbon development is a new platform to maintain economic ...
Read More
BACKGROUND AND OBJECTIVES: This study aims to examine the endogenous variable, low-carbon development, and valuate its influencing factors, given its pivotal role in environmental protection amid climate change concerns and economic growth. Low carbon development is a new platform to maintain economic growth through reducing carbon emissions and reducing the use of natural resources, because it was predicted that reducing emissions will increase economic growth while preventing forest loss, improving air quality and living standards, and reducing mortality rates.METHODS: Utilizing a quantitative method, this study integrates a novel viewpoint by combining low-carbon development with related emission factors. The study utilizes secondary data, specifically time series data spanning 31 years from 1991 to 2021, which were analyzed using regression study methods. The factors being examined include capital formation, deforestation, land transportation, agricultural land, and industrialization.FINDINGS: Findings reveal that low-carbon development in North Sumatra is influenced significantly by capital formation, deforestation, agricultural land, and industrialization, with land transportation showing no substantial impact. Capital formation has a favorable impact on low-carbon development. But, deforestation, land transportation, agricultural land and industrialization have a negative impact on low-carbon development. Together, these determinants account for 77.55 percent of the variance. Capital formation contributes 19.8 percent, deforestation 15.6 percent, agricultural land 19.0 percent, and industrialization 18.9 percent to low-carbon development.CONCLUSION: The hypothesis established in this study is accepted. To foster low-carbon development in North Sumatra, specific attention is required from local governments. Capital formation is vital. Measures include controlling interest rates, supporting businesses, fostering an investment-friendly climate, ensuring security, and integrating environmental sustainability considerations into project implementation to curb carbon emissions. Prevention of deforestation involves tightening land clearance licenses and enhancing institutional quality through environmental protection and property rights legislation. The government must strive for promoting eco-friendly agricultural practices with mitigated through outreach programs involving experts who educate farmers on minimizing emissions, reducing carbon emissions from pesticide with using biochar sourced from empty palm fruit bunches and also rice straw which is very easy to obtain at a low cost and is environmentally friendly, and emphasizing environmental preservation policies in the industrial sector like industrial transformation efforts with an effective approach to reducing carbon emissions such as restructuring various aspects of industrial activities, including investment, final demand, intensity and production methods. The implementation of tax emissions and strategic interventions increases the likelihood of realizing low-carbon development in North Sumatra, aligning with sustainable development goals.
Environmental Engineering
L. Agustina; M. Romli; P. Suryadarma; S. Suprihatin
Abstract
BACKGROUND AND OBJECTIVES: To improve photocatalytic degradation perfomance, photocatalyst particles with a larger surface area preferred. The effectiveness of titanium dioxide as a photocatalyst depends on the synthesis method used. The method affect the particle size, crystallinity and phase composition ...
Read More
BACKGROUND AND OBJECTIVES: To improve photocatalytic degradation perfomance, photocatalyst particles with a larger surface area preferred. The effectiveness of titanium dioxide as a photocatalyst depends on the synthesis method used. The method affect the particle size, crystallinity and phase composition of the produced catalyst. This study aims to develop a green synthesis process of nano- titanium dioxide photocatalysts for the advanced treatment of palm oil mill effluent.METHODS: The green synthesis of titanium dioxide nanoparticles used de Man-Rogosa-Sharpe broth media containing Lactobacillus bulgaricus culture and titanium oxyhydroxide metal oxide. The factors investigated were the molarity of titanium oxyhydroxide (0.025 molar; 0.035 molar and 0.045 molar) and temperature (40; 50 and 60 degrees Celsius). The synthesized photocatalyst was characterized using a particle size analyzer to determine the particle size. The produced photocatalyst with a nanoparticle size range of 1-100 nanometer was further characterized using scanning electron microscopy-energy dispersive X-ray and X-ray diffraction. The photocatalyst was tested for advanced treatment of palm oil mill secondary effluent. The factors investigated in this test included the irradiation time and titanium dioxide photocatalyst dosage. The treatment performance was evaluated in terms of effluent quality and pollutant elimination efficiency.FINDINGS: Nano titanium dioxide photocatalysts have been synthesized through titanium oxyhydroxide metal oxide biologically using Lactobacillus bulgaricus. The synthesis process at a temperature of 60 degrees Celsius and a 0.025 molar metal oxide solution produced a titanium dioxide photocatalyst with a size of 33.28 nanometer. The content of titanium and oxygen constituents in the photocatalyst was confirmed to be 39.06 percent and 47.95 percent respectively, with 67.6 percent titanium dioxide crystallinity in a theta degree of 25.4. This indicates that the green synthesis has produced an anatase diffraction nano titanium dioxide photocatalyst. Testing the titanium dioxide photocatalyst to treat palm oil mill secondary effluent yielded in elimination efficiency of 16.16-27.27 percent for chemical oxygen demand and 11.05-21.95 percent for biological oxygen demand. Phenol, which is toxic and difficult to degrade biologically, could eliminated significantly (up to 81.12 percent) using a photocatalyst dose of 1 gram per liter at a time irradiation of 2.5 hour.CONCLUSION: The biological synthesis of nano titanium dioxide photocatalysts is affected by temperatures and metal oxide concentrations. The photocatalytic process for advanced treatment of palm oil mill secondary effluent shows that this synthesis process effectively eliminates phenols. Some compounds such as lignin, amino acids, and pectin are not significantly mineralized using this process.
Environmental Engineering
M. Samimi
Abstract
BACKGROUND AND OBJECTIVES: Industrial wastewater usually contains metal ions which are hazardous to human and aquatic organisms. Nowadays, the application of inexpensive biomaterials in adsorptive removal of metal ions, such as plant biomass, has been widely considered. In this study, the efficiency ...
Read More
BACKGROUND AND OBJECTIVES: Industrial wastewater usually contains metal ions which are hazardous to human and aquatic organisms. Nowadays, the application of inexpensive biomaterials in adsorptive removal of metal ions, such as plant biomass, has been widely considered. In this study, the efficiency of Eucalyptus globulus fruit biomass for biological adsorption of cadmium ions from aquatic environments has been evaluated.METHODS: After drying, the collected biosorbent was ground and powdered. The dried biomass, after screening with particle size of less than 45 micrometers, was used in all experiments. The effects of operating factors, such as biosorbent to cadmium ratio, pH value of the solution and residence time of biomass and metal, on the amount of analyte adsorption were evaluated by response surface methodology. The optimum conditions for maximum metal uptake by Eucalyptus globulus fruit biomass were also evaluated using the Box-Behnken Design model. Kinetic studies were statistically described to investigate the metal adsorption process.FINDINGS: Validation experiments showed the accuracy of the model proposed for determining the optimum conditions for the cadmium biosorption process. Based on the experimental data, the values of coefficient of determination, adjusted coefficient and predicted coefficient used in the model were determined as 0.9948, 0.9855 and 0.9245, respectively. Using the model, the maximum cadmium ion adsorption by biomass was obtained at 93.65 percent, biosorbent-to-metal ratio of 9:1, pH value of 6, and contact time of 80 minutes.CONCLUSION: In the present study, the Eucalyptus globulus fruit biomass, under optimal operating conditions, proved to be an efficient sorbent for cadmium uptake from aqueous environments. The results from the experimental data of the adsorption studies were consistent with pseudo-second-order kinetics (maximum capacity of 128.2 milligram per gram), indicating that the chemical adsorption of cadmium on the used biomass occurring in monolayers.
Environmental Engineering
I. Ridwan; S. Kadir; N. Nurlina
Abstract
BACKGROUND AND OBJECTIVES: The condition of the watershed area, particularly the Tabunio Watershed, is one with priority treatment due to the condition of the land where it is located, which qualifies for the “very high recovery” category with a critical land area of 19,109.89 hectare. Moreover, ...
Read More
BACKGROUND AND OBJECTIVES: The condition of the watershed area, particularly the Tabunio Watershed, is one with priority treatment due to the condition of the land where it is located, which qualifies for the “very high recovery” category with a critical land area of 19,109.89 hectare. Moreover, the diminishing water absorption also results in flooding during the rainy season and drought in the dry season. Environmental damage in the Tabunio Watershed is exacerbated by the existence of traditional gold mining and has become a concern for many parties. With this in mind, the perceived increase in natural disasters, such as floods, landslides, and droughts from year to year requires an evaluation of land degradation in the Tabunio Watershed.METHODS: The objective of this study was to monitor and simulate the spatial and temporal aspects of land degradation in the Tabunio Watershed. It was suggested that a complete land degradation index be developed to capture the spatial and temporal aspects of land degradation between the years 2005 and 2020. This index integrates land use land cover, vegetation coverage, soil erosion, and soil moisture content.FINDINGS: The proposed comprehensive land degradation index in this study demonstrated that (a) the land degradation index, which successfully monitored the spatio-temporal aspect of land degradation (kappa coefficient > 0.73 and overall accuracy > 86 percent), is regarded as having high accuracy. (b) In comparison to the individual indices, the land degradation index is capable of revealing land degradation in a more comprehensive manner. (c) land degradation index is readily transferable and applicable to other study areas due to the fact that all of its land degradation indices can be quickly extracted from remotely sensed imagery. (d) land degradation index can be used in a wide variety of contexts, which also accounts for the provision of quantitative predictions with regard to the possibility of land degradation. (e) The rate of land degradation will generally increase from 2005 to 2020, with 2010 being the most extreme year.CONCLUSION: The proposed comprehensive land degradation index method is capable of describing the spatial and temporal aspect of land degradation from 2005 to 2020 in the watershed area. Moreover, the proposed approach shows that the level of land degradation from 2005 to 2020 normally increases, recording the extreme years as the 2010s. In addition, in most years, the amount of land degradation was moderate, only few of which had severe or extreme degradation. As a consequence of this, some land degradation management measures ought to be created in advance, guaranteeing the protection of this vital region, which is a source of freshwater. The study provides a substantial understanding of the effect of land degradation on sustainable environment management and development in the watershed.
Environmental Engineering
R. Pramana; B.Y. Suprapto; Z. Nawawi
Abstract
BACKGROUND AND OBJECTIVES: Land-based aquaculture operations, at present, are intensively conducted to meet the ever-growing demand for food consumption. Floating net cages are one of the traditional methods commonly used by Indonesian fishermen for river fish farming. Increased human activities ...
Read More
BACKGROUND AND OBJECTIVES: Land-based aquaculture operations, at present, are intensively conducted to meet the ever-growing demand for food consumption. Floating net cages are one of the traditional methods commonly used by Indonesian fishermen for river fish farming. Increased human activities along the Musi River and coastline have resulted in pollution and waste in the river waters and fluctuating water quality. Yet, floating net cage owners still manually assess the water quality. This study aims to develop an early warning system for water quality and create a decision-making program as a reference for fishermen to relocate floating net cages when the river water quality deteriorates.METHODS: The device was tested at 39 locations within a radius of approximately 3400 meters, and the distance between locations varied between 55 and 334 meters. The river was divided into three sections: the river coast, the middle section, and the other river coast. Water quality sensors were placed at a depth of 0–20 centimeters from the surface of the Musi River, with measurement durations at each location ranging from 1 to 40 minutes. Direct measurements of the Musi River's water quality were obtained by monitoring the water quality using an internet-based computer application. A decision-making Python program utilizing fuzzy logic was then executed to evaluate the suitability of the river water quality for fish cultivation. The program's input variables comprise water temperature, potential of hydrogen, and dissolved oxygen sensor data. Meanwhile, the program output recommends floating net cage owners to either "Stay in position" or "Move." Water quality warnings that exceed the upper and lower threshold limits are displayed using light-emitting diode indicators and a buzzer.FINDINGS: Overall, the water quality values of the Musi River at the test locations generally indicated stable and suitable conditions for river fish cultivation. The average water quality values were 29.20 degrees Celsius for temperature, 3.98 milligrams per liter for dissolved oxygen, and a potential of hydrogen of 6.42. From all the data obtained during the decision-making program, 36 locations suggested that the floating net cages should "Stay in position." Meanwhile, the three remaining locations were recommended to "Move" as they exhibited poor water quality, with potential of hydrogen values below 6. Field observations indicated that these locations were situated near residential areas, factories/industries, and tributaries, which are highly susceptible to waste and pollution. The output of the decision-making program correlated with the issued warnings by the water quality warning indicators when the pH value exceeded the lower threshold limit.CONCLUSION: The fuzzy logic method implemented in the Python program for decision-making regarding the relocation of floating net cages in river fish farming revealed the fluctuating water quality conditions of the Musi River within a specific time duration. These conditions correlated with the proximity of the water bodies to pollution sources such as residential areas, factories, and tributaries. The program's output classified the status of the floating net cages into two conditions: "Stay in position" or "Move." The decision-making application to relocate floating net cages for fish farming in rivers provides a solution for fishermen as the resulting program decisions give the same indication as the reading value of the water quality sensor.
Environmental Engineering
P. Chanpiwat; A. Numprasanthai
Abstract
BACKGROUND AND OBJECTIVES: Cadmium contamination in rice grains with a maximum concentration 19 times the national food standard at sites downstream of zinc mines in Thailand has been reported since 2005. These cultivated rice grains are consumed by local residents and have increased the risk of renal ...
Read More
BACKGROUND AND OBJECTIVES: Cadmium contamination in rice grains with a maximum concentration 19 times the national food standard at sites downstream of zinc mines in Thailand has been reported since 2005. These cultivated rice grains are consumed by local residents and have increased the risk of renal dysfunction in residents. Decreasing negative health effects by reducing cadmium accumulation in rice should be considered. Since the soil characteristics affecting the toxicity and accumulation of cadmium in rice cultivated in cadmium-contaminated soils have never been reported, this study was conducted to investigate the soil characteristics affecting the plant availability and mobility of cadmium in paddy soils and the impacts of these soil characteristics on rice seed germination and accumulation in rice.METHODS: The study area is the Mae Tao Subdistrict, Mae Sot District, Tak Province, located downstream of abandoned zinc mines in northwestern Thailand. A total of 36 paddy fields that were reported to produce rice grain with cadmium contents exceeding the national standard for cadmium in rice (0.4 milligrams per kilogram) were randomly selected for composite soil sample collection. The physicochemical characteristics of the soils, including soil texture, redox potential, cation exchange capacity, potential of hydrogen, organic matter, total cadmium concentration, and chemical speciation and concentration of plant-available cadmium, were analyzed. The toxicity of cadmium to rice and the cadmium accumulation ability in rice were assessed through the germination of Khao Dok Mali 105, a popular rice variety for cultivation and consumption in the study area.FINDINGS: Total cadmium concentrations of 0.20 to 89.87 milligrams/kilogram were found in the soils, with 64 percent of all samples containing values greater than the national background value in agricultural soils. Up to 74.2 percent and 99.5 percent of total cadmium was found in the forms of mobile- and plant-available cadmium, respectively. Plant-available cadmium caused significant reductions in the number of seeds germinated and root length. Cadmium toxicity to rice was positively affected by the concentrations of exchangeable, plant-available and total cadmium. The concentrations of plant-available, exchangeable, carbonate-bound, and total cadmium strongly affected the accumulation of cadmium in germinated roots. Cluster analysis showed that plant-available cadmium was the main factor responsible for high cadmium accumulation in rice.CONCLUSION: Based on the overall analyses of soil characteristics affecting the mobility and plant availability of cadmium in soils and its toxicity and accumulation in germinated rice, the immobilization of plant-available cadmium in soils by adding organic matter-rich amendments to soils is recommended. In addition, oxidizing soil conditions should be maintained during rice cultivation to reduce the phytoavailability of cadmium in soils.
Environmental Engineering
W. Hidayat; B.A. Wijaya; B. Saputra; I.T. Rani; S. Kim; S. Lee; J. Yoo; B.B. Park; L. Suryanegara; M.A.R. Lubis
Abstract
BACKGROUND AND OBJECTIVES: The decreasing availability of fossil fuels requires the adoption of renewable energy sources that facilitate the mitigation of greenhouse gas emissions. Meeting Indonesia’s goal of achieving a 23 percent mixed energy composition by 2025 through co-firing demands a substantial ...
Read More
BACKGROUND AND OBJECTIVES: The decreasing availability of fossil fuels requires the adoption of renewable energy sources that facilitate the mitigation of greenhouse gas emissions. Meeting Indonesia’s goal of achieving a 23 percent mixed energy composition by 2025 through co-firing demands a substantial increase in the availability of renewable energy sources. Bamboo is a valuable biomass resource because of its fast growth rate and potential for energy production. Innovative processes like torrefaction are necessary to improve the quality of biomass due to its challenging low density and hydrophilic properties. The objective of this study is to evaluate the characteristics of torrefied bamboo pellets made from Gigantochloa pseudoarundinacea by using a fixed counter-flow multi-baffle reactor. This study aims to investigate the properties and viability of torrefied G. pseudoarundinacea pellets for solid fuel applications to fill existing knowledge gaps about this technology’s potential.METHODS: A fixed counter-flow multi-baffle reactor was used to torrefy G. pseudoarundinacea bamboo pellets. The baffles in the reactor column held the pellets, while hot gas flowed through them. Torrefaction was conducted at 280 degrees Celsius with a 3–5 minutes resident time, and the gas flow rate was 4.25 cubic meters per minute. Torrefied pellets at the column bottom were counted as the first cycle. Three cycles of torrefaction were used, and each cycle was evaluated. The second and third cycles used torrefied pellets from the first and second cycles. The physical, chemical, and bioenergetic properties of the pellets before and after torrefaction were evaluated.FINDINGS: The bamboo pellets’ physical, chemical, and thermal properties changed significantly after torrefaction. Torrefaction at 285 degrees Celsius produced 78.5 percent of the production yield, according to thermogravimetric and derivative thermogravimetric analyses. Lightness, red/green, and yellow/blue chromaticity decreased, indicating darker, better solid fuel pellets. Torrefaction in the third cycle reduced moisture content by 99.8 percent. The lower moisture content reduced fungal growth, and improvinged biomass transport and storage. Torrefaction also raised the bamboo pellets’ calorific value and physical and mechanical properties. The highest calorific value of 21.62 megajoules per kilogram was obtained after the third cycle of torrefaction, and it was 16.6 percent higher than that of raw pellets. Torrefaction improved pellet grindability and combustion by decreasing density and compressive strength. Torrefaction increased ash, volatile matter, and fixed carbon. The ultimate analysis showed increased carbon and reduced nitrogen, hydrogen, and oxygen, improving solid fuel quality, energy density, and combustion emissions. According to a Fourier-transform infrared analysis, torrefaction caused extractive and hemicellulose degradation and lignin increase. The chemical analysis showed that temperature and residence time degraded hemicellulose and increased lignin in the torrefied pellets.CONCLUSION: The torrefaction process using a fixed counter-flow multi-baffle reactor demonstrated the enhanced properties of G. pseudoarundinacea bamboo pellets for their application as solid fuel. The study’s findings contribute to the comprehension of torrefaction and the enhancement of conditions for producing superior biomass products. These findings have implications for exploring the potential applications of torrefaction in diverse industries and energy sectors.
Environmental Engineering
M.J. Zoqi
Abstract
BACKGROUND AND OBJECTIVES: Leachate recirculation has become a global practice for anaerobic digestion of municipal solid waste. Implementation of artificial neural networks for modeling and prediction of this process still remains challenging. Additionally, there has been a lack of research regarding ...
Read More
BACKGROUND AND OBJECTIVES: Leachate recirculation has become a global practice for anaerobic digestion of municipal solid waste. Implementation of artificial neural networks for modeling and prediction of this process still remains challenging. Additionally, there has been a lack of research regarding the generalization capacity of neural networks using the data from other studies. This study aimed to enhance methane production rates and decrease biostabilization time in municipal solid waste treatment. It addressed the research gap in applying and generalizing neural networks to predict biogas production based on laboratory-measured parameters.METHODS: Two distinct systems were utilized for leachate treatment. System 1 involved collecting the leachate delivered by a new municipal solid waste reactor and transferring it to a recirculation tank. System 2 consisted of passing the fresh municipal solid waste leachate through a degraded municipal solid waste and then returning the obtained liquid back to the waste reactor. The experimental data were employed to develop an artificial neural network to predict methane content and cumulative biogas production. The model was trained and optimized using the experimental data. The effectiveness and generalizability of the optimal neural network were evaluated by using it for the unseen data from other studies, ensuring its ability to make accurate predictions beyond the training dataset.FINDINGS: The results demonstrated that in System 1, ammonium and chemical oxygen demand concentrations in the leachate progressively increased to high levels. In System 2, the average removal efficiencies for chemical oxygen demand and ammonium were found to be 85 percent and 34 percent respectively. The methane yield in biogas reached 59 liters per kilogram of dry weight, with a corresponding methane fraction of 63 percent. The neural network model showed an excellent performance, with validation performances of 0.716 and 0.634. The overall performance of the dataset resulted in correlation coefficients of 0.9991 and 0.9975. Finally, high correlation coefficients of 0.88 and 0.82 were achieved by incorporating the test data from other studies.CONCLUSION: Leachate recirculation enhanced the reduction of chemical oxygen demand and the production of methane in bioreactors. Ammonium concentrations initially increased and later decreased due to waste adsorption and bacterial assimilation. The artificial neural network applied for predicting the cumulative methane production from municipal solid waste displayed a robust generalizability when tested on the data from other studies. The neural network was not significantly affected by changes in waste chemical properties, laboratory conditions, and recirculation rate. However, it showed a significant sensitivity to variation of waste mechanical properties.
Environmental Engineering
N.D. Takarina; N. Matsue; E. Johan; A. Adiwibowo; M.F.N.K. Rahmawati; S.A. Pramudyawardhani; T. Wukirsari
Abstract
BACKGROUND AND OBJECTIVES: Zeolite has been recognized as a potential adsorbent for heavy metals in water. The form of zeolite that is generally available in powder has challenged the use of zeolite in the environment. Embedding powder zeolite in a nonwoven sheet, known as a zeolite-embedded sheet can ...
Read More
BACKGROUND AND OBJECTIVES: Zeolite has been recognized as a potential adsorbent for heavy metals in water. The form of zeolite that is generally available in powder has challenged the use of zeolite in the environment. Embedding powder zeolite in a nonwoven sheet, known as a zeolite-embedded sheet can be an alternative to solve that. Another challenge is that information and models of zeolite-embedded sheet removal efficiency are still limited. The novelty of this study is, first, the development of a zeolite-embedded sheet to remove heavy metals from water, and second, the use of the random forest method to model the heavy metal removal efficiency of a zeolite-embedded sheet in water.METHODS: The heavy metals studied were copper, lead and zinc, considering that those are common heavy metals found in water. For developing the zeolite-embedded sheet, the methods include fabrication of the zeolite-embedded sheet using a heating procedure and heavy metals adsorption treatment using the zeolite-embedded sheet. The machine learning analysis to model the heavy metal removal efficiency using zeolite-embedded sheet was performed using the random forest method. The random forest models were then validated using the root mean square error, mean square of residuals, percentage variable explained and graphs depicting out-of-bag error of a random forest.FINDINGS: The results show the heavy metal removal efficiency was 5.51-95.6 percent, 42.71-98.92 percent and 13.39-95.97 percent for copper, lead and zinc, respectively. Heavy metals were reduced to 50 percent at metal concentrations of 10.355 milligram per liter for copper, 171.615 milligram per liter for lead and 4.755 milligram per liter for zinc. Based on the random forest models, the important variables affecting copper removal efficiency using zeolite-embedded sheet were its contents in water, followed by water temperature and potential of hydrogen. Conversely, lead and zinc removal efficiency was influenced mostly by potential of hydrogen. The random forest model also confirms that the high efficiency of heavy metals removal (>60 percent) will be achieved at water potential of hydrogen ranges of 4.94–5.61 and temperatures equal to 29.1 degrees Celsius.CONCLUSION: In general, a zeolite-embedded sheet can adsorb diluted heavy metals from water because there are percentages of adsorbed heavy metals. The random forest model is very useful to provide information and determine the threshold of heavy metal contents, water potential of hydrogen and temperature to optimize the heavy metal removal efficiency using a zeolite-embedded sheet and reducing pollutants in the environment.
Environmental Engineering
M. Shariati; M. Afrazi; H. Kamyab; S. Rouhanifar; E. Toghroli; M. Safa; Sh. Chelliapan; H. Afrazi
Abstract
This study provides a comprehensive exploration of the utilization of scrap tires in geotechnical engineering, focusing on their applications, mechanical behavior, environmental impact, and potential challenges. The utilization of waste tires in engineering applications is of paramount importance, offering ...
Read More
This study provides a comprehensive exploration of the utilization of scrap tires in geotechnical engineering, focusing on their applications, mechanical behavior, environmental impact, and potential challenges. The utilization of waste tires in engineering applications is of paramount importance, offering a sustainable solution to the escalating challenge of waste tire management. The accumulation of discarded tires poses significant environmental and economic concerns globally, with traditional disposal methods often leading to environmental degradation, fire hazards, and increased land use. By harnessing the inherent properties of scrap tires, such as their durability and energy-absorbing characteristics, geotechnical engineering presents a promising path for repurposing these materials. This review examines how integrating scrap tires into geotechnical projects, such as retaining walls, slopes, and drainage systems, can offer sustainable alternatives while addressing environmental concerns. The paper extensively analyzes the mechanical behavior of sand-rubber mixtures through laboratory investigations. Factors including rubber proportions, aspect ratios, and interaction mechanisms are dissected to understand their influence on shear strength, deformation behavior, and modulus properties. These insights pave the way for optimizing the performance of sand-rubber mixtures in engineering applications. Additionally, the article delves into modeling approaches that simulate the intricate behavior of these mixtures, facilitating better design and analysis. The economic feasibility of incorporating scrap tires is investigated, emphasizing the cost-effectiveness achieved through reduced material costs and enhanced infrastructure durability. The environmental benefits of diverting rubber waste from landfills are discussed, highlighting the alignment with sustainability goals and regulations. Despite the advantages, engineering challenges associated with rubber particles' behavior are acknowledged, and potential solutions are explored. Through a comprehensive synthesis of research findings and practical implications, this review aims to provide a deep understanding of the potential of scrap tires in geotechnical engineering. It concludes by advocating for further research and innovation to harness the full potential of scrap tires, ultimately contributing to a more sustainable and resilient built environment.
Environmental Engineering
F.R. Sutikno; N.A. Sasongko; I.N. Djarot; H.S. Dillon
Abstract
BACKGROUND AND OBJECTIVES: Environmental, Social, and Governance reporting is universally recognized as a pivotal component embraced by the industry to address climate change and serve as a safeguard to the physical and social environments of society. In the absence of global standards, organizations ...
Read More
BACKGROUND AND OBJECTIVES: Environmental, Social, and Governance reporting is universally recognized as a pivotal component embraced by the industry to address climate change and serve as a safeguard to the physical and social environments of society. In the absence of global standards, organizations have developed standardized reporting frameworks for companies. This study provides an adaptation easiness measurement and a wide range of environmental, social, and governance disclosure components extracted from several standards. Multiple standards and a broader range of scaling measurements were used in this study to observe the characteristics of each industry where each environmental, social, and governance component is specific. The objective of this study is to investigate how companies in Indonesia comply with various environmental, social, and governance standards, given the importance of identifying variations of easiness on environmental, social, and governance on sustainability reports.METHODS: Using multi-source analysis, content analysis, and exploratory data analysis, this study identified whether industries in Indonesia adopt selective patterns in the components included in their sustainability reports.FINDINGS: This study identified 26 environmental, 8 social, and 23 governance popular components, which are components with high environmental, social, and governance report applicability and company adaptability. The environmental components that is easy to adapt primarily center around formal environmental, social, and governance framework data, in social component revolves around customary practices in corporate social responsibility, and in governance component emphasizes corporate reputation. By employing industry-specific environmental, social, and governance components, this study identifies three distinct groups, enabling the formulation of tailored policies to effectively address the unique needs of each group.CONCLUSION: This study exposes several findings on how companies in Indonesia adopt different components of environmental, social, and governance reports according to their needs, regulations, and analysis complexity. The novelty of this study combined the use of unified comparison components, a wider range of scaling measurements, and specific environmental social, and governance components per-industry type.
Environmental Engineering
A. Bdour; A. Hejab; L. Almakhadmeh; M. Hawa
Abstract
BACKGROUND AND OBJECTIVES: Energy efficiency plays a crucial role in the success and sustainability of desalination technologies. Energy considerations are intricately linked with every aspect of planning, management, and operation in water desalination. This study aims to evaluate and enhance energy ...
Read More
BACKGROUND AND OBJECTIVES: Energy efficiency plays a crucial role in the success and sustainability of desalination technologies. Energy considerations are intricately linked with every aspect of planning, management, and operation in water desalination. This study aims to evaluate and enhance energy requirements, energy efficiency, and the economic feasibility of the Hashemite University photovoltaic brackish water reverse osmosis desalination plant at Hashemite University.METHODS: This study’s aims were achieved by conducting an energy audit and detailed assessment to identify the energy efficiency considerations that should be integrated into the facility’s planning, management, and operation strategies. To ensure accurate and reliable data collection and enable a comprehensive analysis of the plant’s energy performance, portable energy analyzers and loggers were employed to measure energy consumption, and measurements and verification techniques were recommended and implemented to establish the required baseline. A regression model was utilized to determine the potential energy savings resulting from energy conservation measures. This involved determining the expected savings by calculating the area between two curves: the new actual consumption of the brackish water reverse osmosis plant after implementing energy conservation measures and the curve generated by the model representing the usual consumption in the absence of energy conservation measures.FINDINGS: This study underscores the challenges faced by desalination, particularly regarding intensive energy consumption. It also presents innovative ways to achieve sustainability by emphasizing energy efficiency, integrating renewable energy, and advocating for a holistic water management approach. It was determined that the maximum specific energy consumption of the Hashemite University photovoltaic brackish water reverse osmosis plant was 0.625 kilowatts per cubic meter. This reflects the actual consumption and energy performance of the plant, which was found to be 192 percent more efficient than the estimated specific energy and 144 percent more efficient than the calculated specific energy. No energy conservation measures were implemented at this stage, as the plant was already operating efficiently. The measured data shall be considered as a baseline for future investigations and monitoring and evaluation of the plant. Many challenges were identified during the current work, including the low quality of raw water and minimal demand for freshwater, which resulted in lower operation hours outside of sun peak hours, while the direct utilization of photovoltaic energy is recommended.CONCLUSION: Renewable energy and energy recovery were recognized as potential sources for energy savings to achieve sustainable and long-term feasible operation and cost recovery at the Hashemite University photovoltaic brackish water reverse osmosis plant. The feasibility of the plant showed a fast payback period of up to 1.1 years. Utilizing clean solar photovoltaic energy to power the brackish water reverse osmosis plant led to a considerable reduction of greenhouse gases (mainly carbon dioxide). The estimated amount of carbon dioxide reduction during the project’s lifetime was 1,289,600 kilograms. The integration of solar energy showed promise for further enhancing energy efficiency and sustainability. This study contributes to making the desalination sector more environmentally friendly and economically viable, which is of paramount importance in addressing global water scarcity concerns.
Environmental Engineering
B. Kartiwa; . Maswar; A. Dariah; . Suratman; N.L. Nurida; N. Heryani; P. Rejekiningrum; H. Sosiawan; S.H. Adi; I. Lenin; S. Nurzakiah; Ch. Tafakresnanto
Abstract
BACKGROUND AND OBJECTIVES: To minimize the potential risk of land fires, climate monitoring and hydrology characterization are crucial factors in managing peatlands. Therefore, this study aimed to investigate the relation between climate variability and water dynamics to develop a peatland fire early ...
Read More
BACKGROUND AND OBJECTIVES: To minimize the potential risk of land fires, climate monitoring and hydrology characterization are crucial factors in managing peatlands. Therefore, this study aimed to investigate the relation between climate variability and water dynamics to develop a peatland fire early warning model.METHODS: This research was conducted in an oil palm plantation located in Pangkalan Pisang village, Koto Gasib subdistrict, Siak district, Riau province, Indonesia. Herein, the observed parameters were climate and dynamics of ground water level and soil moisture, which were monitored using data loggers installed on predefined representative locations and distributed over three blocks of 30 hectares in the palm oil plantation research site. Thus, the peat fire early warning model was developed based on the relation between peat water dynamics and the recorded history of peat fire events.FINDINGS: Herein, a recession curve analysis of soil moisture and ground water level revealed the relation between soil water dynamics and local climate. Consequently, this study found that soil moisture was the suitable parameter to estimate peat fire risk owing to its predictability. Furthermore, this study has identified a threshold of low and high peat fire risk in the area with less than 104 percent and 129 percent dry weight of soil moisture content, respectively. Afterward, this soil moisture criterion was transferred into precipitation value to develop a peat fire early warning model for estimating the days left before a high peat fire risk status was attained based on the latest daily rainfall rates.CONCLUSION: This study has developed a simple peat fire early warning model using daily precipitation data. The accurate estimation of countdown days to peat fire susceptibility status in an area would enhance fire mitigation strategies in peatlands.
Environmental Engineering
. Syafrudin; I.B. Priyambada; M.A. Budihardjo; S. Al Qadar; A.S. Puspita
Abstract
Sustainable food waste management is globally concerning, thus necessitating cutting-edge approaches and a thorough understanding. To address this complicated problem effectively, bibliometric analysis and multicriteria decision-making can be combined. Therefore, multicriteria decision-making methods ...
Read More
Sustainable food waste management is globally concerning, thus necessitating cutting-edge approaches and a thorough understanding. To address this complicated problem effectively, bibliometric analysis and multicriteria decision-making can be combined. Therefore, multicriteria decision-making methods have become critical tools for navigating the intricacies of sustainable solution development. This study explored the complex field of sustainable food waste management by conducting a comprehensive bibliometric analysis of multi-criteria decision uses in this field. Using bibliometric methods, a methodological examination of the scientific literature was performed to identify important trends, contributions, and gaps in research on sustainable food waste. Decision-makers can be further empowered by using multicriteria decision-making to assess interventions across various dimensions, including environmental effects, economic viability, and social acceptability, highlighting the interdisciplinary nature of this strategy and promoting interactions between researchers, decision-makers, and stakeholders. These guidelines directly followed the development of policies, business practices, and consumer behavior, indicating a more sustainable food system. The combination of bibliometric analysis and multicriteria decision-making offered a formidable instrument to reduce food waste, enhance resource efficiency, and spur progress in global sustainability initiatives in a world where sustainable behavior is crucial. The study results in decision-makers evaluating interventions and strategies holistically by concurrently considering the food waste dimension, a multicriteria model, economic factors, environmental factors, social factors, policy considerations, and technical feasibility are just some of the factors considered in this study. This analysis highlights the growing commitment to comprehensive solutions that focus not only on waste reduction but also on resource efficiency, environmental stewardship, and societal well-being as sustainable food waste management gains traction on global agendas.
Environmental Engineering
R.G. Sarmurzina; G.I. Boiko; B.K. Kenzhaliyev; U.S. Karabalin; N.P. Lyubchenko; P.V. Kenyaikin; Zh.B. Ilmaliyev
Abstract
BACKGROUND AND OBJECTIVES: The reduction of fresh water deficit and water-related morbidity is the most important problem of the state’s national security. The effective treatment of natural water in industrialized areas from natural and anthropogenic pollutants is the main ecological task. Coagulation ...
Read More
BACKGROUND AND OBJECTIVES: The reduction of fresh water deficit and water-related morbidity is the most important problem of the state’s national security. The effective treatment of natural water in industrialized areas from natural and anthropogenic pollutants is the main ecological task. Coagulation is one of the effective methods used to treat water chemically to purify it. Aluminum polyoxychlorides have gained popularity because of their advantages over coagulants—aluminum and iron sulfates. No production of aluminum polyoxychloride occurs in Kazakhstan despite the need for coagulants (the minimum need is assessed at about 11 thousand tons). The work is aimed at theoretical justification and experimental proof of a principally new approach to the development of aluminum polyoxychloride production technology based on activated aluminum alloys containing metal activators, such as gallium, indium , and tin from 0.5 to 5 percent weight. In addition, the goal is solving environmental issues associated with improving the drinking water quality and related to environmental pollution with wastewater.METHODS: The microstructures, phase components, and elemental compositions of alloys and reaction products were studied by scanning electron microscopy/energy dispersive X-ray spectroscopy. The thermal effects of alloys were investigated usin thermogravimetry methods. Oil content in wastewater was determined by spectrophotometry. Oil particle dimensions and wastewater zero potentials were determined using electrophoretic light scattering method and residual turbidity by turbidimetry. Water quality assessment was included in the purified water analysis and comparison with the sanitary and epidemiological standards established for drinking water supply and wastewater intended for water discharge.FINDINGS: The structures and compositions of activated aluminum alloy containing metal activators - gallium, indium, and tin - from 0.5 to 5 weight percent and aluminum polyoxychlorides based on it were studied using modern instrumental methods. The efficiency of the treatment of natural and oil-contaminated wastewater with aluminum polyoxychloride was assessed. The treated water parameters were within the norms established for drinking water supply and wastewater disposal by Sanitary Rules and Norms 2.1.4.559-96. The efficiency of potable water treatment reached 90–99 percent.CONCLUSION: An effective and technologically simple method is developed for producing aluminum polyoxychloride. It involves dissolving an activated alloy in 1–5 percent hydrochloric acid, with an aluminum content of 98.5–85 percent. Alloy processing is carried out at temperatures ranging from 60 to 65 degree celsius. The temperature rises from 20 to 25 degree celsius to the specified optimum without heat supply from the outside due to the interaction among reagents. The process is completed in 2–3 hours. The results confirm that aluminum polyoxychloride is an effective coagulant for drinking and wastewater treatment. The treated water is within the established limits in terms of hydrogen potential, chemical oxygen demand, and turbidity. The water treatment method can be easily implemented.
Environmental Engineering
L. Kasmini; A.S. Setia Batubara
Abstract
BACKGROUND AND OBJECTIVES: Oysters (Crassostrea gigas) are one food source commonly consumed by the community and an important commodity with high economic value. Environmental issues, such as microplastics, have become a worldwide concern for its implications for aquatic organisms, especially oysters. ...
Read More
BACKGROUND AND OBJECTIVES: Oysters (Crassostrea gigas) are one food source commonly consumed by the community and an important commodity with high economic value. Environmental issues, such as microplastics, have become a worldwide concern for its implications for aquatic organisms, especially oysters. This study aims to identify the microplastics and growth patterns of oysters in Aceh Province, Indonesia's north and east coasts. This study aims to determine which oysters are suitable for consumption and food health based on research locations along the east-north coast of Aceh Province.METHODS: The locations in this study include nine regencies/cities, which are directly facing the Malacca Straits. Microplastic isolation from oysters using 10 percent potassium hydroxide and incubation process were done to dissolve the organic materials. The growth pattern was analyzed to determine the growth rate of oysters at each study location.FINDINGS: The results of this study showed that oysters in all sampling locations were contaminated with microplastics, with a high prevalence of 48 percent found in Langsa, followed by Aceh Timur and Pidie each (40 percent), Banda Aceh (38 percent), Aceh Utara (32 percent), Aceh Besar and Bireun (30 percent), Lhokseumawe (12 percent), and Aceh Tamiang (8 percent). The analysis of the growth patterns revealed that the growth of oysters at each location was not optimal (b <3 or negative allometric).CONCLUSION: In 500 oyster samples collected, 139 were contaminated with microplastics. The most dominant type of microplastic contaminating oysters is fiber up to 170 particles, followed by films 28 particles, and fragments 19 particles. Negative allometric growth pattern might correlate with microplastics that contaminate the waters and enter the oyster's digestive organs. The results of this study reveal that oysters consumed by people have been contaminated with microplastics, so stakeholders must carry out socialization for early prevention to be realized.
Environmental Engineering
S. Dhanasekar; R. Sathyanathan
Abstract
BACKGROUND AND OBJECTIVES: Recent investigations indicated that continuous use of fertilizers and pesticides in agricultural fields not only deteriorated soil health but also caused a deleterious effect on surface and groundwater bodies. Treating such wastewater using microalgae has shown higher nutrient ...
Read More
BACKGROUND AND OBJECTIVES: Recent investigations indicated that continuous use of fertilizers and pesticides in agricultural fields not only deteriorated soil health but also caused a deleterious effect on surface and groundwater bodies. Treating such wastewater using microalgae has shown higher nutrient removal and biomass efficiency. Moreover, microalgae are proven to be miniature factories that augment the huge potential of biofuel. The aim of this study is to evaluate the different light intensities required for Chlorella vulgaris algae to remove nutrients from synthetic agricultural wastewater in a fabricated bubble column photobioreactor. Additionally, the research findings focus on assessing the degradation of organic pollutants and biomass generation under different light conditions.METHODS: In this study, synthetic agrochemical wastewater was treated in a bubble column photobioreactor with blue, red, sunlight, and white light conditions. The treatment was conducted in a batch process with a hydraulic retention time of 21 days, using light intensity of 1800–2800 luminescence and a temperature maintained at 25–28° degrees Celsius.FINDINGS: Under different lighting conditions, the blue light condition exhibited a higher biomass concentration of 3.99 gram per liter, with an estimated heat energy value of 1.278 kilojoule per liter. Moreover, in the blue light condition, scanning electron microscopy analysis showed no significant changes in the shape of Chlorella vulgaris and energy-dispersive X-ray analysis elemental composition exhibited the lowest oxygen-to-carbon ratio (1.03). Fourier transform infrared spectroscopy was used to illustrate the functional group of microalgae under different lighting conditions. The lipid, protein, carbohydrate, and amino acid contents were 3329–3332, 2116–2139, 1636–1645, and 545–662 per centimeter, respectively. The higher biomass potential from the wastewater treatment shows significant benefit in terms of feedstock and biofuel production.CONCLUSIONS: The present investigation identified the nutrient reduction and biomass productivity to be more in blue light condition for Chlorella vulgaris algae. The investigation also assessed the potential of lipid, carbohydrate, and protein content in Chlorella vulgaris, which indirectly evaluates the biofuel potential of the species.
Environmental Engineering
L. Sulistyowati; Y. Yolanda; N. Andareswari
Abstract
BACKGROUND AND OBJECTIVES: The Belawan Harbor is the third largest port, which is located in an estuary, causing the port water area to be vulnerable to pollution, especially heavy metals. Conflicts between the community and the port authorities often occur due to pollution. Heavy metals are dangerous ...
Read More
BACKGROUND AND OBJECTIVES: The Belawan Harbor is the third largest port, which is located in an estuary, causing the port water area to be vulnerable to pollution, especially heavy metals. Conflicts between the community and the port authorities often occur due to pollution. Heavy metals are dangerous contaminants for waters, and total organic carbon in waters is needed but will cause eutrophication if the concentration is excessive in the environment. The level of heavy metal pollution in the waters of the Belawan Harbor and the factors that cause the pollution should be analyzed, because the level of heavy metal pollution has not been measured in the sediments of harbor waters. This study can be used as a reference for the actions of related agencies in dealing with heavy metal pollution in waters.METHODS: Sampling of sediments was performed at 10 locations, starting before the harbor activity began and moving toward the open sea. Sampling was conducted using Van Veen grab. Heavy metal concentrations were analyzed in the laboratory using the atomic absorption spectrometer method to assess the essential heavy metal copper and non-essential heavy metal lead, cadmium, and mercury. Heavy metal pollution in sediments was assessed by analyzing sediment pollution index. The multivariate statistical analysis on the relationship among factors was conducted using Pearson correlation matrix method, principal component analysis, and cluster analysis.FINDINGS: The environmental quality standards used indicate average concentration of heavy metals; lead (28,869 milligram per kilogram) and copper (8,003 milligram per kilogram) are below the quality standard. The mercury concentrations are undetectable (<0.00011 milligram per kilogram) at each station. By comparison, the concentration of cadmium (1,455 milligram per kilogram) exceeded the Interim Sediment Quality Guidelines from the Canadian Council of Ministers of the Environment. Results of the index analysis show that the average value of the pollution factor of copper is −0.177 (low contamination), that of lead is −1.433 (moderate contamination), and that of cadmium is −4.850 (high contamination); the geoaccumulation index value of copper is −5.328. (not polluted), that of lead is −0.190 (unpolluted), and that of cadmium −1.657 (moderately polluted). As mercury concentration in sediments is relatively low, it is not considered when calculating pollution levels. Overall, on the basis of a pollution index of 1.033 (1 < pollution load index ≤ 2), this condition indicates that the waters of the Belawan Harbor are categorized as not polluted to lightly polluted. The highest total organic carbon is at the estuaries of the Belawan and Deli Rivers. The sediment fraction is 72.2 percent sandy, 16.4 percent sludge, and 11.4 percent clay substrate.CONCLUSION: Pollution in the waters of the Belawan Harbor is in the category of not polluted to slightly polluted. Although the pollution is still in the light category, this must be of particular concern to the relevant agencies, especially the local government, to make the right policies to overcome this pollution immediately. Pollution problems increase with the anthropogenic activities around coastal areas, as well as activities in the Belawan and Deli River watersheds, because the pollutant will flow from the upstream to the estuary area.
Environmental Engineering
D.B. Aviantara; F. Suciati; G. Hadiko; N.S. Indrasti; M. Yani
Abstract
BACKGROUND AND OBJECTIVES: Polychlorinated biphenyls are pervasive contaminants that are receiving attention worldwide. Due to their well-known propensity to have harmful impacts on both humans and the environment, polychlorinated biphenyls have been internationally banned for use. In this study, dechlorination ...
Read More
BACKGROUND AND OBJECTIVES: Polychlorinated biphenyls are pervasive contaminants that are receiving attention worldwide. Due to their well-known propensity to have harmful impacts on both humans and the environment, polychlorinated biphenyls have been internationally banned for use. In this study, dechlorination of five polychlorinated biphenyl congeners, 2,2′,5,5′-tetrachlorobiphenyl, 2,2′,4,5,5′-pentachlorobiphenyl, 2,2′,3,4,4′,5′-hexachlorobiphenyl, 2,2′,3,4,4′,5′-hexachlorobiphenyl, 2,2′,4,4′,5,5′-hexachlorobiphenyl, and 2,2′,3,4,4′,5,5′-heptachlorobiphenyl, are evaluated. The chlorines from polychlorinated biphenyl congeners were removed using a heterogeneous catalyst synthesized via microwave-assisted impregnation of zinc metal onto pulverized shrimp shell waste.METHODS: The five polychlorinated biphenyl congeners were dechlorinated through treatments combination of time (1–4 hours), heat (150–250 degree celsius), and catalyst proportion (1–5 percent weight/weight basis). The dechlorination trials followed the Box–Behnken experimental design and then analyzed using response surface methodology. Levels of the remaining polychlorinated biphenyl congeners were monitored by using a gas chromatograph equipped with an electron capture detector.FINDINGS: The results of the trials demonstrated that among the five polychlorinated biphenyl congeners, only 2,2′,3,4,4′,5,5′-heptachlorobiphenyl did not respond to the provided treatments. Three congeners, namely, 2,2′,5,5′-tetrachlorobiphenyl, 2,2′,4,5,5′-pentachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl, showed positive response, and one congener 2,2′,3,4,4′,5′-hexachlorobiphenyl showed negative response to the provided treatments. These findings suggested that chlorine attached to the para position of the biphenyls ring was easier to remove. The efficiency calculation of total polychlorinated biphenyl concentrations after treatments was approximately 25 percent. Such a low degree of effectiveness may be caused by the catalyst becoming inactive, either chemically through the deposition of chlorines that have been removed from the biphenyl ring or mechanically by the leaching of zinc from the surface of the pulverized shrimp shell due to insufficient mechanical strength. Optimization via response surface methodology produced optimal results for dechlorination at 150 degree celcius for 2.4 hours with 5 percent additional catalyst.CONCLUSION: The total amount of polychlorinated biphenyls that remained after dechlorination was not significantly impacted by the treatment combination of temperature, duration, and weight of the catalyst. However, the treatments had significant effects on the chlorine removal at the para positions of the biphenyl ring. In this case 2,2′,5,5′-tetrachlorobiphenyl, 2,2′,4,5,5′-pentachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl congeners have positive responses and 2,2′,3,4,4′,5′-hexachlorobiphenyl congener has a negative response. For polychlorinated biphenyl congeners having more than six chlorines, no chlorine removal was observed.