M.H. Rahimi; N. Kalantari; M. Sharifidoost; M. Kazemi
Abstract
In this study, the quality of a treated wastewater for agricultural and irrigation purposes was investigated. 39 quality parameters were investigated at the entrance of an effluent channel to the destination plain in monthly time intervals during a year. The aim of this study was drawing an analogy between ...
Read More
In this study, the quality of a treated wastewater for agricultural and irrigation purposes was investigated. 39 quality parameters were investigated at the entrance of an effluent channel to the destination plain in monthly time intervals during a year. The aim of this study was drawing an analogy between analyses results and the latest standards in the world (nationwide and internationally), the agricultural and irrigation usage indexes and the Wilcox diagram. The results showed that some parameters such as turbidity, total suspended solids, electrical conductivity, sodium, detergents, total coliform and focal coliform, ammonium, residual sodium carbonate, the Kelly’s Ratio and the Wilcox diagram were exceeding the permissible limit and are not suitable for agriculture and irrigation. It was found that the aquifers in the study area were polluted by natural salinity and geogenic source. As a result, application of the treated wastewater from Qom for agriculture and irrigation purposes needs to be revised and monitored. An action plan is also needed to manage a huge source of water and to avoid further environmental and health risks.
S.T. Pham Phu; M.G. Hoang; T. Fujiwara
Abstract
The current study aims to analyze waste characteristics and management practices of the hotel industry in Hoi An, a tourism city in the center of Vietnam. Solid wastes from 120 hotels were sampled, the face-to-face interviews were conducted, and statistical methods were carried out to analyze the data. ...
Read More
The current study aims to analyze waste characteristics and management practices of the hotel industry in Hoi An, a tourism city in the center of Vietnam. Solid wastes from 120 hotels were sampled, the face-to-face interviews were conducted, and statistical methods were carried out to analyze the data. The results showed that the mean of waste generation rate of the hotels was 2.28 kg/guest/day and strongly correlated to internal influencing factors such as the capacity, the price of the room, garden, and level of restaurant. The differences in waste generation rate of the hotels were proved to be statistically significant. The higher the scale of hotels, the higher the waste generation rate. Moreover, the waste composition of the hotels was identified by 58.5% for biodegradable waste, 25.8% for recyclables and 15.7% for others. The relative differences in the waste composition of the hotels by climate, the features of hotels, and the types of the guest were explained. Whereby, the higher size of the hotels, the higher percentage of biodegradable and less proportion of recyclable waste. Also, this study revealed that the implementation status of waste management practices of the hoteliers initially reaped quite positive achievements with 76% for sorting, 39% for recycling, 29% for reduction, and 0.8% for composting. The rate of waste management practices was proportional to the scale of the hotel. This study provided information on waste management practice of hotel industry and contributed to the overall assessment of municipal solid waste management practices of Hoi An city.
S.M. Tajbakhsh; H. Memarian; A. Kheyrkhah
Abstract
The proper use of natural resources can preserve these valuable assets. In line with the management of natural resources, land use optimization can be highly useful. The aim of the present study is to propose an appropriate integrative model for optimized allocation of lands for surface runoff and sediment ...
Read More
The proper use of natural resources can preserve these valuable assets. In line with the management of natural resources, land use optimization can be highly useful. The aim of the present study is to propose an appropriate integrative model for optimized allocation of lands for surface runoff and sediment load minimization and net income maximization in Bayg watershed, Iran. In this study, five categories of land uses, i.e. irrigated orchard, rangeland, irrigated farming, rainfed farming and almond orchard were spatially optimized to minimize surface runoff and sediment yield and to increase net income by integrating three approaches: weighted goal programming, analytic hierarchy process and multi-objective land allocation algorithm. To achieve the target levels in this work, the acreages of almond orchard and rainfed farming should be reduced by 100% and 37.32% respectively, and irrigated farming acreage should be increased by 138.53%. Through these alterations in the land use acreage, the sediment load will be reduced by 16.78% and net income will be improved by 72.52%. However, runoff volume will be increased by 0.22%. Results indicated that weighted goal programming satisfied 96% and 46% of the target levels of sediment load and net income respectively, but failed to reduce runoff volume. Therefore, it is necessary for managers to control runoff using the strategies related to runoff harvesting, especially on steep slopes. Generally, it can be concluded that a combination of the techniques weighted goal programming, analytic hierarchy process and multi-objective land allocation is highly capable to optimize land use and land covers based on the conflicting objectives.
J.C. Paquit; R.I.P. Rama
Abstract
The potential effect of invasive plant species on biodiversity is one of most important subject of inquiry at present. In many parts of the world, the alarming spread of these plants has been documented. Knowing that climate exerts a dominant control over the distribution of plant species, predictions ...
Read More
The potential effect of invasive plant species on biodiversity is one of most important subject of inquiry at present. In many parts of the world, the alarming spread of these plants has been documented. Knowing that climate exerts a dominant control over the distribution of plant species, predictions can therefore be made to determine which areas the species would likely spread under a climate change scenario and that is what this study aims to tackle. In the current study, a total of 211 species occurrence points were used to model the current and projected suitability of Piper aduncum in Bukidnon, Philippines using Maxent. Results revealed that the suitability of the species was determined primarily by climatic factors with Bio 18 (precipitation of the warmest quarter) as the strongest influencing variable with a mean percent contribution of 22.1%. The resulting model was highly accurate based on its mean test Area Under Curve that is equal to 0.917. Current prediction shows that suitable areas for Piper are concentrated along the southern portion of Bukidnon. Only 9% of the province is suitable for the species at present but is predicted to increase to 27% because of climate change. The central and southwestern parts of the province are the areas of high threat for invasion by Piper.
M.G. Hoang; T. Fujiwara; S.T. Pham Phu; K.T. Nguyen Thi
Abstract
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated ...
Read More
A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate the impacts of significant factors on household waste production. The model obtained from this study indicated that household location, household size, house area per person, and family economic activity are important determinants of the waste generation rate. The models could explain about 34% of the variation of the per capita daily waste generation rate. Diagnostic tests and model validation results showed that the regression model could provide reliable results of estimated household waste. The study revealed that per capita urban household waste generation is 70–80% higher compared to a rural household. The models also showed that if a family ran a business from home, the household waste generation rate would increase by about 35%. This result provides reliable information for better waste collection and management planning. Two other significant variables (family size and house area per capita) do not contribute much (less than 20%) to waste generation. Variables accounting for household income, presence of a garden, number of rooms in a house, and percentage of members of different ages were proven to be not significant. The study provides a reliable method for estimating household waste generation, providing decision makers useful information for waste management policy development.
A.R. Darban Astane; M. Hajilo
Abstract
The current study was carried out to evaluate the quantity and quality of rural domestic waste generation and to identify the factors affecting it in rural areas of Khodabandeh county in Zanjan Province, Iran. Waste samplings consisted of 318 rural households in 11 villages. In order to evaluate the ...
Read More
The current study was carried out to evaluate the quantity and quality of rural domestic waste generation and to identify the factors affecting it in rural areas of Khodabandeh county in Zanjan Province, Iran. Waste samplings consisted of 318 rural households in 11 villages. In order to evaluate the quality and quantity of the rural domestic waste, waste production was classified into 12 groups and 2 main groups of organic waste and solid waste. Moreover, kriging interpolation technique in ARC-GIS software was used to evaluate the spatial distribution of the generated domestic waste and ultimately multiple regression analysis was used to evaluate the factors affecting the generation of domestic waste. The results of this study showed that the average waste generated by each person was 0.588 kilograms per day. with the share of organic waste generated by each person being 0.409 kilograms per day and the share of solid waste generated by each person being 0.179 kilograms per day. The results from spatial distribution of waste generation showed a certain pattern in three groups and a higher rate of waste generation in the northern and northwestern parts, especially in the subdistrict. The results of multiple regression analysis showed that the households’ income, assets, age, and personal attitude are respectively the most important variables affecting waste generation. The housholds’ attitude and indigenous knowledge on efficient use of materials are also the key factors which can help reducing waste generation.
M. Keshvardoostchokami; L. Babaei; A.A. Zamani; A.H. Parizanganeh; F. Piri
Abstract
In this study, an easy synthesized method for preparation of chitosan/iron oxide nanocomposite as a bio-sorbent has been applied. Analytical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction; Field emission scanning electron microscopy and transmission electron microscopy ...
Read More
In this study, an easy synthesized method for preparation of chitosan/iron oxide nanocomposite as a bio-sorbent has been applied. Analytical techniques such as Fourier transform infrared spectroscopy, X-ray diffraction; Field emission scanning electron microscopy and transmission electron microscopy were utilized to survey of morphological structure and the functional groups characterization. The histogram of frequency of particle size confirmed that medium size of the synthesized nanoparticles was 50 nm. Beside the obtained nanocomposite, application of chitosan as the precursor and shrimp shell as natural chitin and a natural polymer were assessed as adsorbents for decontamination of Ni2+, Cd2+ and Pb2+ as examples of heavy metals from drinking water. Batch studies were performed for adsorption experiments by changing variables such as pH, contact time and adsorbent dose. Based on the experimental sorption capacities, 58, 202 and 12 mg of Ni, Cd and Pb per g of Chitosan-Fe2O3 nanocomposite as adsorbent respectively, confirm that combination of Fe2O3 nanoparticles with chitosan makes a more efficient adsorbent than chitosan and chitin. Adsorbents in uptake of the mentioned heavy metals are in the order of Chitosan-Fe2O3 nanocomposite > chitosan> chitin. In addition, the kinetics and isotherm investigations were surveyed. Moreover, it has been shown that the synthesized nanocomposite significantly reduces the amount of the mentioned ions from the real wastewater sample.
S. Akhtar; A.S. Ahmad; M.I. Qureshi; S. Shahraz
Abstract
Waste is a byproduct of human life. Nowadays, municipal solid waste is being produced in excessive amounts and in this way, both developing and developed countries are facing challenges regarding generation of waste. Economic development, urbanization and improved living standards in cities have contributed ...
Read More
Waste is a byproduct of human life. Nowadays, municipal solid waste is being produced in excessive amounts and in this way, both developing and developed countries are facing challenges regarding generation of waste. Economic development, urbanization and improved living standards in cities have contributed to increase in the amount and complexity of solid waste produced. The present study was conducted in the residential area of main Boulevard Gulberg, Lahore to determine the present methods and efficiency of current solid waste management facility and to estimate the willingness of the selected households to pay for the improvement of solid waste management through questionnaire survey. It was found that current Solid waste management system in the area is fair but needs more improvement in terms of improved collection efficiency and rates, recycling bins, and segregation of waste at storage. According to the questionnaire survey, majority of the respondents despite belonging to middle class incomes are willing to pay an amount less than USD 4.8 for the improvement of waste management facility in the area. The area lacks frequent collection of waste containers. Therefore, there is a need for upgradation of storage and collection facilities in terms of increase in collection efficiency and rates, introduction of recycling facility and segregation of waste at source. Waste storage and collection sites of the area should be monitored periodically and waste should be disposed of in a scientific manner in sanitary landfills.
S. Noorabadi; A.H. Nazemi; A.A. Sadraddini; R. Delirhasannia
Abstract
There is a close connection between saltwater intrusion into aquifers and groundwater extraction. Freshwater extraction in coastal aquifers is one of the most important reasons for the saltwater intrusion into these aquifers. Condition of extraction system such as well depth, discharge rate, saltwater ...
Read More
There is a close connection between saltwater intrusion into aquifers and groundwater extraction. Freshwater extraction in coastal aquifers is one of the most important reasons for the saltwater intrusion into these aquifers. Condition of extraction system such as well depth, discharge rate, saltwater concentration and etc. could affect this process widely. Thus, investigating different extraction conditions comprises many management advantages. In the present study, the effects of freshwater extraction on saltwater interface displacement have been investigated in a laboratory box. Three different well depths (H) were considered with combinations of 3 different extraction rates (Q) and 3 saltwater concentrations (C) for detailed investigation of the effects of these factors variations on saltwater displacement. SEAWAT model has been used to simulate all the scenarios to numerically study of the process. The experimental and numerical results showed that when the C and Q rates were small and the well depth was shallow, the saltwater interface wouldn’t reach the extraction well, so the extracted water remained uncontaminated. When the C and Q rates were increased and the well was deepened, the salinity of the extracted water became higher. When the Q and C rates were high enough, in the shallow well depth, the final concentration of the extracted water was low but a huge part of the porous media was contaminated by the saltwater, furthermore when the well was deepened enough, the final concentration of the extracted water was increased but a small part of the porous media was contaminated by the saltwater. Finally, the results showed that when the Q and H rates were high enough, the extraction well behaved like a barrier and didn’t allow the advancing saltwater wedge toe to be intruded beyond the wells.
M. Pazoki; B. Hasanidarabadi
Abstract
Sirri Island is one of the most important islands in Iran where contains massive amounts of crude oil reservoirs and is a crude oil exporting and storage spot. Petroleum sludge wastes produced by the refineries are deposited in outdoor 2-ha open pits. 30 sludge samples from different depot locations ...
Read More
Sirri Island is one of the most important islands in Iran where contains massive amounts of crude oil reservoirs and is a crude oil exporting and storage spot. Petroleum sludge wastes produced by the refineries are deposited in outdoor 2-ha open pits. 30 sludge samples from different depot locations were conducted in 3-time intervals and mixed with each other to form one homogenized sample. The sample was treated by solvent extraction method using methyl ethyl ketone as an efficient polar solvent in order to recover the valuable hydrocarbon and oil. About 99.8% of the oil was recovered and determined to reach almost the same quality as the exportable crude oil of Sirri Island. The sediments were also tested for size distribution range and titled as fine-grained soil. Toxicity characteristics leaching procedure test was conducted on the residuals to determine whether the waste is categorized as toxic and hazardous. The industrial waste evaluation model used in the current work suggested different leachate concentrations (10%, 30%, 50%, 70% and 90% of total leachate) based on toxicity characteristics leaching procedure for different probable leaching scenarios. The surface and subsurface regional conditions such as depth to underground water table, climate condition, subsurface pH, soil texture and material were defined to the model as well. Then, the model simulated 10000 possible runs considering the leaching procedure, contaminant concentrations, maximum contaminant limits and surface and sub-surface conditions. The final outcomes regarding heavy metals results showed that nickel, chromium and vanadium were protective under composite liner while cobalt and lead were not safe under such liner and need proper treatment before landfilling. As the final step, the size and details of landfill were designed. The landfill was selected as a square with side and depth of 55m and 3m respectively. The composite liner consisted of 1.5mm high density polyethylene layer with 50cm compacted clay liner of 10-7 cm/s hydraulic conductivity underneath.
M.H. Sayadi; N. Ahmadpour; M. Fallahi Capoorchali; M.R. Rezaei
Abstract
The aim of this study was to evaluate the ability of microalgae Spirulina platensis and Chlorella vulgaris to remove nitrate and phosphate in aqueous solutions. Spirulina platensis and Chlorella vulgar is microalgae was collected in 1000 ml of municipal water and KNO3, K2HPO4 was added as sources of ...
Read More
The aim of this study was to evaluate the ability of microalgae Spirulina platensis and Chlorella vulgaris to remove nitrate and phosphate in aqueous solutions. Spirulina platensis and Chlorella vulgar is microalgae was collected in 1000 ml of municipal water and KNO3, K2HPO4 was added as sources of nitrate and phosphate in three different concentrations (0.25, 0.35 and 0.45g/L). During the growth period, the concentration of nitrate and phosphate was recorded at 1, 4, 6 and 8 days. The highest nitrate removal on the 8 day for Chlorella vulgaris was 89.80% at the treatment of 0.25g/L and for Spirulina platensis was 81.49% at the treatment of 0.25g/L. The highest phosphate removal for Spirulina platensis was 81.49% at the treatment of 0.45g/L and for Chlorella vulgaris was 88% at the treatment of 0.45g/L. The statistical results showed that the amount of phosphate and nitrate removal during different time periods by Chlorella vulgaris depicted a significant difference at P<0.01, while Spirulina platensis demonstrated a significant difference at P<0.05.Thus, Spirulina platensis and Chlorella vulgaris can be effectively used to remove nitrate and phosphate from effluent and waste water treatments, although it demands more research in different climatic conditions.
M. Tajbakhsh; H. Memarian; Y. Shahrokhi
Abstract
Mashhad City, according to the latest official statistics of the country is the second populated city after Tehran and is the biggest metropolis in the east of Iran. Considering the rapid growth of the population over the last three decades, the city’s development area has been extended, significantly. ...
Read More
Mashhad City, according to the latest official statistics of the country is the second populated city after Tehran and is the biggest metropolis in the east of Iran. Considering the rapid growth of the population over the last three decades, the city’s development area has been extended, significantly. This significant expansion has impacted natural lands on suburb and even some parts e.g. rangelands and agricultural area have been transited to urban land uses. The study was aimed at analyzing and simulating land use changes in Mashhad, Iran. The work needs a model to simulate land use changes among multiple categories and combine spatial and temporal changes during the projection period. Thus, Cellular Automata-Markov model was chosen to meet this target. In this work, the projected time period corresponded to the final 20-year vision period of all-round development of Iran for the target point of 2025 based on a long-term plan. Multi criteria evaluation approach integrated along with analytic hierarchy process were employed for preparing suitability maps for the five land uses, i.e. urban continuous patches, urban discontinuous patches, rural patches, agricultural lands, and range lands. Having applied the matrices utilized in model calibration, the best kappa coefficient proved to be associated with the land use maps dated 1996 and 2002. The Kappa index of quantity and allocation agreement was determined to be 0.9189 and 0.9529, respectively, which established an almost perfect agreement between simulated and observed land uses according to the year 2015. Change detection results showed that with the physical expansion of urban continuous patches, range lands and agricultural lands mostly transited to urban discontinuous patches and eventually were promoted to urban continuous texture. These developments or gains in urbanized patches will lead to some loses in agricultural lands and rangelands of the suburb in 2025. In addition, the analysis of projected land use map indicated that over the upcoming years, the development of the city in northern front, especially in northwestern region will be more intense with a higher speed in comparison with the other regions.
M.A. Abdoli; M. Rezaei; H. Hasanian
Abstract
Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored ...
Read More
Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i) promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii) improving compost quality and also marketing the compost products simultaneously, iii) promoting the private sector involvements throughout the municipal solid waste management system.
M. Eshghizadeh; A. Talebi; M.T. Dastorani; H.R. Azimzadeh
Abstract
Erosion plots were selected for characterizing the effects of main natural factors on runoff and soil loss in a semi-arid region. These erosion plots with an area of 40 m2 are located in the Kakhk experimental watershed in Gonabad County of Khorasan-e Razave Province in the north-eastern Iran. Data acquired ...
Read More
Erosion plots were selected for characterizing the effects of main natural factors on runoff and soil loss in a semi-arid region. These erosion plots with an area of 40 m2 are located in the Kakhk experimental watershed in Gonabad County of Khorasan-e Razave Province in the north-eastern Iran. Data acquired from 2008 to 2015 include slope, aspect, soil texture and land covers (canopy and litter) factors that were selected as main natural factors and it was tried to determine the effects of these factors on runoff and soil loss amount. In the next stage, it was focused on evaluation of the effects of land covers on runoff generation and soil loss in more details. For this purpose, in each class of the mentioned factors, the relationship between land covers and runoff and soil loss was analysed. The maximum of runoff and soil loss were occurred at E site with the amount of 15.6 mm and 140 g/m2 respectively. Results showed that soil loss and runoff have decreased where the amounts of land covers have increased, and the line gradient is steeper for soil loss reduction than runoff generation. The result especially characterized the role of land covers on soil loss. Based on these results land covers have a significant effect on soil loss but this effect is mostly highlighted in the highest and lowest conditions of erosion potential, rather than the medium erosion potential condition. Furthermore, in each plot and event, a dominant factor determines the quantity of the effect of land cover on runoff and soil loss.
K. Kumaresan; R. Balan; A. Sridhar; J. Aravind; P. Kanmani
Abstract
Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested ...
Read More
Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.
S. De; S. Maiti; T. Hazra; A. Debsarkar; A. Dutta
Abstract
Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill ...
Read More
Landfill leachates are potential threats for environmental degradation. This study was conducted to determine the leachate quality, to identify the dominant pollutants and to evaluate the leachate pollution potential of an active and closed dumping ground of an uncontrolled municipal solid waste landfill site in Kolkata, India using leachate pollution index. The results of the physico-chemical and biological analyses of leachate indicated that landfill site was in its methanogenic phase. Among the analysed leachate pollutants, TDS, BOD5, COD, TKN, NH3-N, Cl¯, TCB, Pb, and Hg surpassed the leachate discharge standards for inland surface water as specified by the municipal solid waste (Management and Handling) Rules, 2013 for both the dumping grounds. Moreover the concentrations of total Cr and Zn also exceeded the leachate disposal standards for the active dumping ground. The leachate pollution potentialities of both the active and closed dumping grounds were comparable as the overall LPI obtained 34.02 and 31.80 respectively. The overall LPI, LPI organic (LPIor), LPI inorganic (LPIin) and LPI heavy metals (LPIhm) of both the dumping grounds largely exceeded the LPI and sub-LPI values for treated leachate before disposal to the inland surface water. In terms of the individual pollution rating, total coliform bacteria, TKN, NH3-N and Hg were identified as the dominant pollutants and major contributing factors for the leachate pollution potential.
S. Bag; N. Mondal; R. Dubey
Abstract
In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach ...
Read More
In recent years managing solid wastes has been one of the burning problems in front of state and local municipal authorities. This is mainly due to scarcity of lands for landfill sites. In this context experts suggest that conversion of solid waste to energy and useful component is the best approach to reduce space and public health related problems. The entire process has to be managed by technologies that prevent pollution and protect the environment and at the same time minimize the cost through recovery of energy. Energy recovery in the form of electricity, heat and fuel from the waste using different technologies is possible through a variety of processes, including incineration, gasification, pyrolysis and anaerobic digestion. These processes are often grouped under “Waste to Energy technologies”. The objective of the study is twofold. First authors assessed the current status of solid waste management practices in India. Secondly the leading barriers are identified and Interpretive structural modeling technique and MICMAC analysis is performed to identify the contextual interrelationships between leading barriers influencing the solid waste to energy programs in the country. Finally the conclusions are drawn which will assist policy makers in designing sustainable waste management programs.
S. Sharma; R.C. Chhipa
Abstract
Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in ...
Read More
Water is a unique natural resource among all sources available on earth. It plays an important role in economic development and the general well-being of the country. This study aimed at using the application of water quality index in evaluating the ground water quality innorth-east area of Jaipur in pre and post monsoon for public usage. Total eleven physico–chemical characteristics; total dissolved solids, total hardness,chloride, nitrate, electrical conductance, sodium, fluorideand potassium, pH, turbidity, temperature) were analyzed and observed values were compared with standard values recommended by Indian standard and World Health Organization. Most of parameter show higher value than permissible limit in pre and post monsoon. Water quality index study showed that drinking water in Amer (221.58,277.70), Lalawas (362.74,396.67), Jaisinghpura area (286.00,273.78) were found to be highly contaminated due to high value of total dissolved solids, electrical conductance, total hardness, chloride, nitrate and sodium.Saipura (122.52, 131.00), Naila (120.25, 239.86), Galta (160.9, 204.1) were found to be moderately contaminated for both monsoons. People dependent on this water may prone to health hazard. Therefore some effective measures are urgently required to enhance the quality of water in these areas.