Environmental Science
A.D. Malik; M.C.W. Arief; S. Withaningsih; P. Parikesit
Abstract
BACKGROUND AND OBJECTIVES: Land use and land cover changes are affected by massive construction, urban expansion, and exploitative agricultural management. These pressures threaten the potential of aboveground carbon storage in Rancakalong District, West Java, Indonesia. In that massive construction ...
Read More
BACKGROUND AND OBJECTIVES: Land use and land cover changes are affected by massive construction, urban expansion, and exploitative agricultural management. These pressures threaten the potential of aboveground carbon storage in Rancakalong District, West Java, Indonesia. In that massive construction and agricultural expansion are ongoing, it is critical to detect the potential changes in carbon stocks in the region. This study evaluated the impact of land use and land cover changes on aboveground carbon stock potential in Rancakalong District, West Java, Indonesia, by incorporating several ground-based carbon inventories into geographic information systems and remote sensing approaches. The spatiotemporal dynamics of the aboveground carbon stocks were assessed using Integrated Valuation of Ecosystem Services and Tradeoffs models.METHODS: Aboveground carbon stocks were estimated using the integrated approach of field inventory and geographic information systems. Land use and land cover changes were assessed from remotely sensed imagery data recorded in 2009 and 2021 using the maximum likelihood classification method in the geographic information as a collection of layers and other elements in a map 10.6 package. Tree height and diameter were collected within the purposively distributed plots with a size of 30 × 30 square meters. Vegetation biomass was assessed using an allometric equation, and aboveground carbon stock data were extrapolated to the landscape scale using a linear regression model of measured carbon stocks and the Normalized Difference Vegetation Index derived from recent satellite imagery.FINDINGS: Vegetated areas were predominant in 2009 and 2021. Vegetation covered 51 percent of the total area in 2009, increasing to 57 percent in 2021. Regarding agricultural area, mixed gardens and drylands decreased between 2009 and 2021. Meanwhile, paddy fields were the only agricultural land use to increase between 2009 and 2021. The bare land and built-up expansion related to the observed land clearing for the Cisumdawu Highway mainly came from the conversion of mixed gardens, paddy fields, and drylands. The results show that the land use and land cover changes in Rancakalong District have caused a reduction in aboveground carbon stocks by 11,096 tons between 2009 and 2021. The highest reduction in aboveground carbon stocks occurred in mixed gardens, while a slight increase in aboveground carbon stocks occurred in forests, shrubs, and paddy fields. The results highlight the contribution of mixed gardens to carbon storage as they are visually similar to forests in the structure and composition of vegetation.CONCLUSION: Land use and land cover changes directly affected the aboveground carbon stock potential in Rancakalong District, indicated by an 11,096-ton reduction in the stocks. This shortage of carbon stock potential was mainly attributed to the massive reduction in mixed garden areas between 2009 and 2021 by 12 percent, which caused a significant decrease in aboveground carbon stocks. The application of the Integrated Valuation of Ecosystem Services and Tradeoffs model is efficient in analyzing the effect of land use and land cover change on aboveground carbon stock dynamics and can be widely used in environmental engineering studies involving remote sensing approaches.
Environmental Science
I.G. Tejakusuma; E.H. Sittadewi; T. Handayani; T. Hernaningsih; W. Wisyanto; A. Rifai
Abstract
BACKGROUND AND OBJECTIVES: Plant growth is improved by arbuscular mycorrhizal fungi, although they have not been researched for slope stability. These fungal inoculations and bamboo interventions may promote root development toward the slip plane. Thstudy looks at how tree roots react to planting ...
Read More
BACKGROUND AND OBJECTIVES: Plant growth is improved by arbuscular mycorrhizal fungi, although they have not been researched for slope stability. These fungal inoculations and bamboo interventions may promote root development toward the slip plane. Thstudy looks at how tree roots react to planting in bamboo tubes and the fungal consortium.METHODS: In a screen house, the development of three fast-growing native Indonesian woody plants, Paraserianthes falcataria, Acacia mangium, and Gmelina arborea, was observed. These plants were planted in bamboo tubes filled with soil donated by Jati Radio and Citatah. The tubes were arranged on an inclined plane with a 20° slope. Arbuscular mycorrhizal fungi were introduced in three dosages, with control plots without mycorrhiza and bamboo.FINDINGS: The findings demonstrated that bamboo may drive root development toward the slip plane. On Jati Radio and Citatah soils, the best arbuscular mycorrhizal fungus inoculation results were observed in G. arborea with a treatment dosage of M3 or 30 g. In both sites, neither therapy showed a meaningful change.CONCLUSION: G. arborea has the maximum phosphorus absorption (80%) and biomass weight (660 grams) with M3 dosage in Citatah and 71 percent with 330 g at the same dose in Jati Radio, which is associated with the ideal amount of arbuscular mycorrhizal fungus inoculation. As a result, this species is the best choice for using biotechnological solutions to stabilize slopes in landslide-prone locations. When bamboo is combined with arbuscular mycorrhizal fungi, root development may be directed and accelerated for the purpose of bridging landslide slip planes.
Environmental Science
A. Zermeño-Gonzalez; E.A. Jimenez-Alcala; J.A. Gil-Marin; H. Ramirez-Rodriguez; M. Cadena-Zapata; A.I. Melendres-Alvarez
Abstract
BACKGROUND AND OBJECTIVES: Pecan nut trees (Carya illinoensis K), due to their condition as woody and long-living species, in addition to the contribution of nuts for consumption, may also have an essential role in assimilating carbon dioxide and sequestering atmospheric carbon. This study aimed to determine ...
Read More
BACKGROUND AND OBJECTIVES: Pecan nut trees (Carya illinoensis K), due to their condition as woody and long-living species, in addition to the contribution of nuts for consumption, may also have an essential role in assimilating carbon dioxide and sequestering atmospheric carbon. This study aimed to determine the carbon dioxide net ecosystem exchange of an orchard of young pecan nut trees in northern Mexico, and its relationship with the growth months of the trees.METHODS: The study was carried out from March to November 2017 in a six-year-old pecan nut tree orchard containing trees of the Western Schley and Wichita varieties. The orchard is drip-irrigated with buried tape. The carbon dioxide net ecosystem exchange between the canopy of the orchard trees and the atmosphere was determined with eddy covariance measurements using a three-dimensional sonic anemometer and an open-path infrared carbon dioxide analyzer.FINDINGS: The highest daytime carbon dioxide net ecosystem exchange rate corresponded with the peak absorption rate of photosynthetically active radiation absorbed by the trees' canopy. It was observed between 11:00 and 14:00 hours throughout the growth months of the trees. The highest carbon dioxide net ecosystem exchange rate was observed in June, at 7 micro mol square meter per second. The relationship between the carbon dioxide net ecosystem exchange and the photosynthetically active radiation absorbed by the trees’ canopy through the growth months was described using a rectangular hyperbolic function. From March to September, the carbon sequestration of the young pecan nuts was 0.962 tons of carbon per hectare.CONCLUSION: The highest carbon dioxide diurnal assimilation rate was observed in May, at 5 717.95 millimoles per square meter. Despite the young age of the pecan trees, the orchard has a retention capacity of 0.962 tons of carbon per hectare for the months evaluated. The young pecan orchard significantly contributes to the assimilation and retention of atmospheric carbon that will increase with the growth of the trees, due to greater leaf and biomass development.
Environmental Science
G. Kowmudi; V. Rashmi; K. Anoop; N. Krishnaveni; S. Naveen
Abstract
BACKGROUND AND OBJECTIVES: Determining food composition and bioactivity is critical to both theoretical and applied research in food science and technology. This is frequently used to determine the nutritional value and overall acceptance of the food by consumers. The current study's goal is to determine ...
Read More
BACKGROUND AND OBJECTIVES: Determining food composition and bioactivity is critical to both theoretical and applied research in food science and technology. This is frequently used to determine the nutritional value and overall acceptance of the food by consumers. The current study's goal is to determine the macronutrient, mineral and antioxidant activity of selected wheat and soybean varieties with the potential to be useful in the food industry to develop value-added products that are safe for consumption.METHODS: The proximate and mineral composition, gluten characterization, total phenolic contents, and antioxidant activity of three wheat cultivars and five soybean cultivars that are indigenous to India were studied.FINDINGS: Wheat varieties were found to be rich in carbohydrates (65.8-68.8 percent) and gluten (27.2-28.6 percent), whereas soybean varieties were found to be the richest source of protein (32.8-33.7 percent), fat (17.1-17.6 percent), fiber (21.7-28.8 percent), polyphenols (2.76-3.59 milligram gallic acid equivalent per gram, and antioxidant activity (97-123 microgram ascorbic acid equivalent per gram). These samples were also found to have significant content of essential minerals.CONCLUSION: The tested samples had a high nutritional value and energy content and could be a good source of nutrition for a large population. A comprehensive report on the proximate and mineral composition, total phenolic content and antioxidant activity of the wheat and soybean varieties collected from the Rewa district, India, was reported.
Environmental Science
N. Robertson; B. Oinam
Abstract
BACKGROUND AND OBJECTIVES: Land suitability analysis is a technique of attaining optimum utilization of natural available land resource. This study is the first attempt to map the potential rice suitability zone besides the existing rice cultivation zone in Imphal-Iril River catchment. The overriding ...
Read More
BACKGROUND AND OBJECTIVES: Land suitability analysis is a technique of attaining optimum utilization of natural available land resource. This study is the first attempt to map the potential rice suitability zone besides the existing rice cultivation zone in Imphal-Iril River catchment. The overriding objective of this study is to identify the land suitability potential zones for rice crop cultivation. The study was carried-out in Imphal-Iril River catchment, Manipur, India.METHODS: The suitability analysis was carried-out based on soil, climate and topographic parameters as the input variable using integrated geographical information system and analytic hierarchy process, a multi criteria decision based approach. To compute criteria weight for various suitability classes, pairwise comparison matrix was applied using analytical hierarchy process and the resulting weights were used for assigning criteria ranking.FINDINGS: The study result indicates that the major section of high and moderate potential suitability zones of rice is concentrated in the flatter valley regions of the catchment. The result also indicates that there is 79.15 km2 of the area which can be potentially cultivated other than the existing agriculture cover. The major patches of such zones are found in the north-western portion of the valley region in the catchment.CONCLUSION: This study clearly indicates, the potential zones lying in the foothills in the north-western which are still not under the agriculture cover have the potential to be cultivated as per the model result. The model result clearly indicates the potential of geographical information system integrated with analytical hierarchy process technique can be utilized to decide the weights of each individual parameter using experts’ opinions which can serve as a versatile tool to carry-out such kind of analysis which can aid policy makers.
Environmental Science
S. Fatnassi; M.B. Almendro Candel; J. Navarro Pedreño; I. Gómez Lucas; M. Hachicha
Abstract
BACKGROUND AND OBJECTIVES: Boron is a micronutrient of high importance, both for plant development and normal growth. The range between boron deficiency and toxicity is very narrow, which makes boron unique among the essential micronutrients. Boron adsorption is one of the most important factors determining ...
Read More
BACKGROUND AND OBJECTIVES: Boron is a micronutrient of high importance, both for plant development and normal growth. The range between boron deficiency and toxicity is very narrow, which makes boron unique among the essential micronutrients. Boron adsorption is one of the most important factors determining the release and fixation of this micronutrient, though its adsorption has not been widely studied in semiarid Tunisian soils. This study aims to improve knowledge of B adsorption process in calcareous salt-affected soils in semiarid areas. It equally focuses on the type of cation (monovalent and divalent) in function of the soil texture and time of shaking. These three latter factors influence boron adsorption, which also influence the availability for plants.METHODS: A study was carried out on boron adsorption at different shaking time intervals (1, 3, 6 and 9 hours) in two soils of different textures in the absence and presence of different background electrolytes solutions (0.02 N CaCl2, 0.02 N MgCl2 , 0.02 N sodium chloride and 0.02 N potassium chloride.FINDINGS: The soil-A (clay loam) adsorbed more boron than soil-B (sandy loam). Boron adsorption was the highest in Soil-A under the presence of potassium chloride, close to the mean values given when using calcium chloride. In Soil-B, it was found with calcium chloride background electrolyte. Minor boron adsorption was observed in both soils when boric acid solution was used without background electrolytes. Adsorbed boron showed significant differences with the shaking time in all treatments used with background electrolytes solutions, except for boron solution treatment without background electrolyte in both soils. As a comparison of divalent and monovalent cations, boron adsorbed content was higher with the solution containing calcium than in sodium chloride solution, due to the fact that calcium carbonate is an important boron adsorbing surface.CONCLUSION: This study reveals that the best conditions for maximum boron adsorption are defined by calcium chloride background electrolyte in this type of soil in a determined shaking time interval of 3 hours. This causes a low rate of boron assimilated by plants, which leads to the decrease of the crop yield and the agricultural production, and subsequently hurt the Tunisian national economy.
Environmental Science
R. Garsetiasih; N.M. Heriyanto; W.C. Adinugroho; H. Gunawan; I W.S. Dharmawan; R. Sawitri; I. Yeny; N. Mindawati; . Denny
Abstract
BACKGROUND AND OBJECTIVES: Peat swamp forest ecosystems are fragile ecosystems with different peat depths according to the level of peat formation. Moreover, a peat swamp forest can have diverse vegetation and high carbon stocks. Thus, caution should be taken in the sustainable management of a peat swamp ...
Read More
BACKGROUND AND OBJECTIVES: Peat swamp forest ecosystems are fragile ecosystems with different peat depths according to the level of peat formation. Moreover, a peat swamp forest can have diverse vegetation and high carbon stocks. Thus, caution should be taken in the sustainable management of a peat swamp forest. However, the connection between vegetation diversity, carbon stocks, and peat depths has not been widely studied in efforts to conserve vegetation and peatlands. This study aimed to analyze the connection between vegetation diversity, carbon stocks, and peat depths in the Kahayan Sebangau Peat Hydrology Unit.METHODS: Plots at the peat depths of four sites were studied: site 1 (<50 cm), site 2 (393-478 cm), site 3 (479-564 cm), and site 4 (565-649 cm).CONCLUSION: All Pearson correlation values between peat depth, vegetation diversity, and carbon stock were positive with each other. This shows that peat depth, vegetation diversity, and carbon stock are interdependent and connected to one another.
Environmental Science
Y.S.K. De Silva; U.M. Rajagopalan; H. Kadono
Abstract
Growth of plants, apart from being complex and highly dynamic, is directly dependent on the environmental conditions, particularly the quality of soil for terrestrial plants and the water quality for aquatic plants. Presence of microplastics in the environment may affect the plant growth in numerous ...
Read More
Growth of plants, apart from being complex and highly dynamic, is directly dependent on the environmental conditions, particularly the quality of soil for terrestrial plants and the water quality for aquatic plants. Presence of microplastics in the environment may affect the plant growth in numerous ways depending on the contents of the growing medium. However, increasing presence of microplastics at an alarming rate due to its pervasive usage and mismanagement of plastics have led to significant environmental problems. Several research studies have been conducted as well as reviewed to investigate the toxic effects of microplastics on aquatic systems, but studies that investigate the toxic effect of microplastics on the terrestrial systems are limited. Hence, in this review the individual and the combined effects of microplastics on the growth of plants and seed germination in both aquatic and terrestrial ecosystems are concisely discussed. At the beginning accumulation of microplastics on aquatic and terrestrial ecosystem is discussed and the reasonable solutions are highlighted that can mitigate the effects from the widespread increase of the plastic debris. Thereafter, the individual and combined effect of microplastics on seed germination and plant growth is reviewed separately while summarizing the important aspects and future perspectives. This review will provide an insight into the existing gap in the current research works and thus could offer possible implications on the effect of microplastics on plant growth and seed germination in aquatic and terrestrial ecosystem.
Environmental Science
A. Iriany; F. Hasanah; D. Roeswitawati; M.F. Bela
Abstract
BACKGROUND AND OBJECTIVES: Increasing global temperature imposes large risks to food security globally and regionally. Besides, adaptation effort on cultivation practices, such as mulching, is urgent to overcome environmental problem due to certain material used, commonly plastic that is not biodegradable. ...
Read More
BACKGROUND AND OBJECTIVES: Increasing global temperature imposes large risks to food security globally and regionally. Besides, adaptation effort on cultivation practices, such as mulching, is urgent to overcome environmental problem due to certain material used, commonly plastic that is not biodegradable. Biodegradable mulch is a mulch that could be degraded by microorganism and made from renewable organic materials. It plays a role in carbon sequestration and will contribute carbon and nutrients to the soil after being degraded. This current research aimed at investigating soil microclimate under various biodegradable mulch compositions and optimizing the compositions of biodegradable mulch that can be used to support the growth of short-cycle crops i.e. horenso (Spinacia olearecea L.).METHODS: This study was carried out using a simple randomized complete block design with one control (without mulch) and five treatments (biodegradable mulch compositions), namely the percentage of water hyacinth (40-80%) and coconut coir (20-60%). FINDINGS: All tested biodegradable mulch compositions could modify microclimate by decreasing 1-2°C of soil temperature and maintaining the soil moisture within the range of 63-84%. Although there was no significant difference in the growth and yield of horenso among the differing biodegradable mulch compositions, the biodegradable mulch composition treatments resulted in signficantly higher value than the control (without mulch). The biodegradable mulch composition treatments could increase fresh shoot weight around 38-55%, fresh root weight for about 55-94%, and dry shoot weight approximately by 1.6-2.8 times compared to the control (without mulch). CONCLUSION: This finding has emphasized that all tested biodegradable mulch compositions are potentially used as mulch for horenso (Spinacia oleracea L.) cultivation. This study provide information in the formulation of biodegradable mulch to adapt the compositions on other short-cycle crops and other horticulture crops.==========================================================================================COPYRIGHTS©2021 The author(s). This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.==========================================================================================
Environmental Science
M. Mohammadi; A. Mohammadi Torkashvand; P. Biparva; M. Esfandiari
Abstract
BACKGROUND AND OBJECTIVES: This study aims down to evaluate the ability of chloride magnesium- aluminium- layered double hydroxides (4:1) for nitrate adsorption from the soil solution in successive cropping periods.METHODS: The study was conductedunder long-term cropping periods, including first crop): ...
Read More
BACKGROUND AND OBJECTIVES: This study aims down to evaluate the ability of chloride magnesium- aluminium- layered double hydroxides (4:1) for nitrate adsorption from the soil solution in successive cropping periods.METHODS: The study was conductedunder long-term cropping periods, including first crop): bell pepper; second crop: mentheae; third crop: cherry tomato; and fort h crop: wheat), absorption of soil mineral nitrate in fallow periods and nitrate absorption from plants by layered double hydroxides. The effect of layered double hydroxides on qualitative and quantitative characteristics of plants was also studied.FINDING: Results indicated that layered double hydroxides were able to induce long-term nitrate exchange in crop and fallow sequences. Layered double hydroxides can adsorb soil excessive nitrates in cropping periods and reduce nitrate concentration in the soil solution. Compared to control, the treatment with 16 gram layered double hydroxide/kilogram soil could reduce nitrate concentration in the soil solution by 95%. During two-week fallow periods, the amount of nitrates mineralized in the soil solution was increased, but layered double hydroxides treatments could adsorb them well and maintained the N-nitrate concentration in the soil solution at a low level. Additionally, Results indicated that application of 2, 4, 8 and 16 gram layered double hydroxides/kilogram soil led to 34%, 44%, 58% and 69% reduction in N-nitrate concentration of soil leachates, respectively, compared to control. By increasing nitrogen availability, layered double hydroxides improved the quantitative and qualitative properties of plants. Application of 2, 4, 8 and 16 gram layered double hydroxides/ kilogram soil increased the plant height (cherry tomato) by 14%, 26%, 50% and 80%, respectively.CONCLUSION: It is concluded that the layered double hydroxides has a potential to be used as a long-term nitrate exchanger to control the movement of nitrate in soil, and thereby reduce risks of nitrate leaching in crop production in sensible areas.
Environmental Science
C. Turan
Abstract
The present study aims to predict the potential geographic distribution and future expansion of invasive alien lionfish (Pterois miles) with ecological niche modelling along the Mediterranean Sea. The primary data consisted of occurrence points of P. miles in the Mediterranean and marine climatic data ...
Read More
The present study aims to predict the potential geographic distribution and future expansion of invasive alien lionfish (Pterois miles) with ecological niche modelling along the Mediterranean Sea. The primary data consisted of occurrence points of P. miles in the Mediterranean and marine climatic data layers were collected from global databases. All the used models run 100% success predictions, and true skill statistics and area under the receiver operating characteristic curve values ranged from 0.42 and 0.71 to 0.86 and 0.95 for current distribution modelling; and 0.0 and 0.0 to 0.83 and 0.94 for the future distribution modelling, respectively. The mean sea surface temperature and maximum bathymetry played an important role in the prediction of the model and explained relatively higher biological importance to the extension and adaptation of P. miles with extreme environmental factors. The predicted suitable habitats of P. miles under the current climate dominantly occurred in the east parts of coastal areas of the Mediterranean. The predicted future suitable habitats of P. miles revealed that P. miles increase its range of distribution dominantly to the central and west part of the Mediterranean in a spatial extent, indicating high suitability of these areas for its future distribution.
Environmental Science
A.B. Achasov; A.A. Achasova; A.V. Titenko
Abstract
Soil erosion is one of the vital factors contributing to the loss of fertility and environmental degradation. Generally accepted diagnostics of eroded soils is based on comparison of the sloping soils profile depth with the watershed soils. In this case, there is a separate problem of slope soils with ...
Read More
Soil erosion is one of the vital factors contributing to the loss of fertility and environmental degradation. Generally accepted diagnostics of eroded soils is based on comparison of the sloping soils profile depth with the watershed soils. In this case, there is a separate problem of slope soils with a naturally shortened profile and eroded soils. Formation of the soil’s natural profile on the slopes, caused by the action of natural factors of soil formation, can be described using a mathematical model, characterizing hydrothermal conditions of the slope areas through relative parameters of insolation (Ki) and moisture. These parameters describe the difference in soil formation conditions on the slopes from the upland areas. They are calculated based on the landforms parameters – incline and slope exposure. Their ratio, xeromorphy coefficient, can be used to forecast humus content and profile thickness of non-eroded soils on the slopes. As studies have shown, for non-eroded chernozem soils of Ukraine, the parameter xeromorphy describes 49% of the profile thickness dispersion, while for eroded soils it does not depend on this parameter. Thus, this model of profile thickness P versus xeromorphy can be used to forecast the thickness of non-eroded soil for specific conditions. Deviation of the profile thickness from the forecast one can be considered as the manifestation of erosion or denudation.
Environmental Science
M. Heshmati; M. Gheitury; M. Hosseini
Abstract
In this study, to investigate the effects of runoff harvesting on soil properties in the semiarid forest, runoff harvesting through semi-circular bund was considered as a method to conserve soil and thereby combat tree mortality. In order to evaluate this hypothesis, runoff was harvested through the ...
Read More
In this study, to investigate the effects of runoff harvesting on soil properties in the semiarid forest, runoff harvesting through semi-circular bund was considered as a method to conserve soil and thereby combat tree mortality. In order to evaluate this hypothesis, runoff was harvested through the semi-circular bund affecting soil quality and moisture storage. The selected forest site is located in Kalehzard, Kermanshah, in Zagros region of western Iran. The experiment was a randomized complete block design with four treatment plots: bund with protection, protection treatment, bund without protection and control treatment. The results showed that the mean values of soil organic carbon in the bund with protection, protection treatment, bund without protection and control treatment were 2.35, 2.40, 1.90, and 1.80%, respectively, indicating no significant difference among them in the first year, while there were significant (p> 0.05) increases in the bund with protection and protection treatment after three years. Furthermore, coarse and very coarse soil aggregates increased significantly in the bund with protection treatment. This treatment also attributed to significant reduction in soil bulk density from 1.46 (in the first year) to 1.32 (in the third year), which enhanced soil moisture content. Finally it was found that bunds with protection significantly curtail dieback and adverse re-growing of stands due to the coupled effects of bund building and protection to curtail forest mortality in the semi-arid regions.
Environmental Science
F. Taleshian Jeloudar; M. Ghajar Sepanlou; M. Emadi
Abstract
Vulnerability of soil separates to detachment by water is described as soil erodibility by Universal Soil Loss Equation which can be affected by land use change. In this study it was attempted to quantify the changes of Universal Soil Loss Equation K-factor and its soil driving factors in three land ...
Read More
Vulnerability of soil separates to detachment by water is described as soil erodibility by Universal Soil Loss Equation which can be affected by land use change. In this study it was attempted to quantify the changes of Universal Soil Loss Equation K-factor and its soil driving factors in three land uses including rangeland, rainfed farming, and orchards in Babolrood watershed, northern Iran. Soil composite samples were obtained from two layers in three land uses, and the related soil physico-chemical properties were measured. The rainfed farming land use showed the highest clay contents, but the highest amounts of soil organic matter and sand particles were found in orchard land use. The high intensity of tillage led to the significant decrease of soil aggregate stability and permeability in the rainfed farming land use. The Universal Soil Loss Equation K-factor was negatively correlated with soil permeability (r=-0.77**). In rangeland, the K-factor (0.045 Mg h/MJ/mm) was significantly higher and the particle size distribution had a great impact on the K-factor. The orchard land use, converted from the rangeland, did not show any increase of soils erodibility and can potentially be introduced as a good alternative land use in sloping areas. However, more detailed studies on environmental, social and economic aspects of this land use are needed.
Environmental Science
A.G. Toledo Bruno; R.A. Marin; M.A.P. Medina; G.R. Puno; R.O. Villarta; R.R. Puno
Abstract
Giant bamboo Dendrocalamus asper is recommended in environmental and livelihood programs in the Philippines due to its various ecological, economic and social benefits. However, there are limited data on the ecology of giant bamboo litterfall production, which contributes to soil nutrient availability. ...
Read More
Giant bamboo Dendrocalamus asper is recommended in environmental and livelihood programs in the Philippines due to its various ecological, economic and social benefits. However, there are limited data on the ecology of giant bamboo litterfall production, which contributes to soil nutrient availability. Bamboo also contributed in carbon sequestration. The study was conducted within the Taganibong Watershed in Bukidnon, Philippines. Nine litterfall traps measuring 1mx1m were established within the giant bamboo stand in the study area. Results show that giant bamboo litterfall is dominated by leaves. Biological characteristics of bamboo litterfall do no not influence litterfall production but temperature, wind speed and humidity correlate with the amount of litterfall. Findings of the study further revealed that fresh giant bamboo tissue contains high carbon content and the soil in the bamboo stand has higher organic matter than the open clearing. These data indicate the role of giant bamboo in carbon sequestration and soil nutrient availability.
Environmental Science
A. Mohammadi Torkashvand; H. Shahin; M. Mohammadi
Abstract
A factorial experiment was conducted to evaluate the impact of super absorbents and organic wastes of rice, olive marc, vermicompost and farmyard manure on the soil water holding capacity and the growth of plant based on randomized complete block design with 13 treatments at two irrigation intervals ...
Read More
A factorial experiment was conducted to evaluate the impact of super absorbents and organic wastes of rice, olive marc, vermicompost and farmyard manure on the soil water holding capacity and the growth of plant based on randomized complete block design with 13 treatments at two irrigation intervals 5 and 10 days. The olive saplings with same heights and better appearances were planted in an open space roofed with a plastic cover with a height of 3 m to avoid the effects of rainfall and snowfall on the results. Stockosorb superabsorbent and weighted zeolite and the rest of bulk materials were mixed. Results showed that the substrate containing 10 g/kg soil of zeolite and the substrate including 20% vermicompost +15% rice wastes +15% manure +50% soil had the best yield and can modify the effect of 10 days irrigation interval compared to the 5 days.
Environmental Science
L.G. Aribal; J.G. Bonggay; E.S. Fernando
Abstract
Leaf size indices of the tree species in the peatland of Agusan del Sur in Mindanao in Philippines was examined to deduce the variation of forest structure and observed forest zonation. Using raunkiaer and webb’s leaf size classification, the leaf morphometrics of seven tree species consistently ...
Read More
Leaf size indices of the tree species in the peatland of Agusan del Sur in Mindanao in Philippines was examined to deduce the variation of forest structure and observed forest zonation. Using raunkiaer and webb’s leaf size classification, the leaf morphometrics of seven tree species consistently found on the established sampling plots were determined. The species includes Ternstroemia philippinensis Merr., Polyscias aherniana Merr. Lowry and G.M. Plunkett, Calophyllum sclerophyllum Vesque, Fagraea racemosa Jack, Ilex cymosa Blume, Syzygium tenuirame (Miq.) Merr. and Tristaniopsis micrantha Merr. Peter G.Wilson and J.T.Waterh.The LSI were correlated against the variables of the peat physico-chemical properties (such as bulk density, acrotelm thickness, peat depth, total organic carbon, nitrogen, phosphorus, and potassium, pH); water (pH, ammonium, nitrate, phosphate); and leaf tissue elements (nitrogen, phosphorus and potassium). Result showed a decreasing leaf size indices and a three leaf size category consisting of mesophyllous, mesophyllous-notophyllous and microphyllous were observed which corresponds to the structure of vegetation i.e., from the tall-pole forest having the biggest average leaf area of 6,142.29 mm2 to the pygmy forest with average leaf area of 1,670.10 mm2. Such decreased leaf size indices were strongly correlated to soil nitrogen, acrotelm thickness, peat depth, phosphate in water, nitrogen and phosphorus in the plant tissue.