Environmental Engineering
J. Nesiba; R. Cuhlova
Abstract
BACKGROUND AND OBJECTIVES: This paper focuses on the development of Czech laws of water resource protection. The presented research examines the statistical data of the number and type of legislative acts concerning to water protection issued in the Czech Republic during the period 1990-2019. Several ...
Read More
BACKGROUND AND OBJECTIVES: This paper focuses on the development of Czech laws of water resource protection. The presented research examines the statistical data of the number and type of legislative acts concerning to water protection issued in the Czech Republic during the period 1990-2019. Several types of legislative acts are followed in administrative law and statistically compared by the development in time and its type. The survey focuses on general water protection acts, water sewage management, agriculture sector, hygiene standards, and the protection of the basins of Czech rivers (e.g., blue water and gray water).METHODS: The analysis firstly concerns to the development of the number of legislative acts during 1990-2019 and secondly discusses a diversification of the legislative acts types (laws, decrees, resolutions, regulations, and strategic plans). A total of 12,272 legislative acts is analyzed during three phases of Czech modern history: 1990-1992 (Czechoslovakia), 1993-2003 (Czech Republic before its accession to the European Union), and 2004-2019 (Czech Republic in the European Union).FINDINGS: Statistical elaboration of legislative acts proves that it is possible to determine different types of water management over time. Protection of water resource management in the Czech Republic was forming from crisis management (1990-1992), via operational management (1993-2003) to strategic management (2004-2019). Current trends after 2020 show a new trend towards integral management.CONCLUSION: Findings provide better understanding of changeable importance of water protection and management attitudes in the Czech Republic in reaction to the development of society.
Environmental Science
L.S. Vanzela; D.C. Pereira; L.D.S.C. Lima; K.U. Khan; C.F.M. Mansano
Abstract
Floating platforms at the hydropower plant reservoirs are attractive sites for aquaculture, fishing and other recreational activities. However, the unregulated construction of these platforms may negatively affect the fauna, flora and water quality of reservoirs. Thus, this study aimed to evaluate the ...
Read More
Floating platforms at the hydropower plant reservoirs are attractive sites for aquaculture, fishing and other recreational activities. However, the unregulated construction of these platforms may negatively affect the fauna, flora and water quality of reservoirs. Thus, this study aimed to evaluate the impact of floating platforms on the limnological aspects of Nova Ponte hydropower plant reservoirs at the Center-West of Minas Gerais State of Brazil. The obtained data were analyzed using the correlation and regression analysis. Dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, total coliforms and thermotolerant bacteria were plotted against the density of floating platforms. The density of platforms significantly (p-value > 0.05) impacted the analyzed limnological aspects of reservoirs. Based on the present results, 4 floating platforms/km2 (1 platform per 25 hectares) of surface water should be the maximum density in order to avoid the deterioration of water quality of reservoirs. With 4 platforms/km2, the expected values in fishing period were estimated to be 5.4 mg/L for biochemical oxygen demand, 375 most probable number per 100 mL of sample for thermotolerant bacteria and 6.1 mg/L for chemical oxygen demand. In fishing-ban period, the expected values were estimated to be 4.1 mg/L for dissolved oxygen, 3.4 mg/L for biochemical oxygen demand, 379 most probable number per 100 mL of sample for thermotolerant bacteria and 4.2 mg/L for chemical oxygen demand. This finding provides important base-line information which could help policy makers to take effective measurements for the appropriate management of surface water resources.
A. Tahir; P. Taba; M.F. Samawi; S. Werorilangi
Abstract
Plastic pollution has universally known accumulated in all environment compartments and accelerating threat to the sustainability of earth. Field survey to examine the occurrence of microplastics in ancient sea water evaporation technology of ponds at Pallengu-Jeneponto, was conducted. From this sea ...
Read More
Plastic pollution has universally known accumulated in all environment compartments and accelerating threat to the sustainability of earth. Field survey to examine the occurrence of microplastics in ancient sea water evaporation technology of ponds at Pallengu-Jeneponto, was conducted. From this sea salt producing ponds, samples of water, sediment and freshly harvested salts were collected. Sixteen samples each of water and sediments and 12 salts were collected. From 16 water and sediment samples there are 31 microplastics item discovered in 11 water samples (68.75% of total contamination) and 41 microplastics item observed in 10 sediment samples (62.5% total contamination), respectively. Interestingly, sampling points at sedimentation/heating pools were found to be the locations with highest occurrence of microplastics in both water and sediment. There are 7 salt samples positively contaminated with 29 microplastics or 58.3% of total contamination, which predominated by line and fragment forms. Fourier transform infra-red spectroscopy analysis has revealed polymers of polyvinyl acetate (41.7%), polyethylene (33.3%) and polystyrene (25%). There was no significant difference found on microplasticss occurrence from 3 kinds of samples collected, although there was a decreasing trend of total microplastics found from water, sediment and salt. Microplasticss abundance were ranged 7-55 items/L water, 14.6-50 items/kg sediments and 6.7-53.3 items/kg salt. With microplastics abundance reached over 53 microplastics items/kg salt, it is believed that continuous consumption by people will end up with possible accumulation of potentially absorbed of various toxic chemical pollutants which present in sea water as salt raw materials. The need for robust and practical strategy in water quality management for reduction of microplasticss contamination in consumed salts is a must.