Environmental Engineering
A.M. Vazquez; A. Samudio-Oggero; H.D. Nakayama; I. Cantero-García
Abstract
BACKGROUND AND OBJECTIVES: The Municipal Park of Areguais is located in the Central Department of Paraguay. Part of this Park is within the area of influence of Ypakarai Lake, which is widely recognized by vacationersfor its natural spaces. Despite being one of the most representative ecological reserves ...
Read More
BACKGROUND AND OBJECTIVES: The Municipal Park of Areguais is located in the Central Department of Paraguay. Part of this Park is within the area of influence of Ypakarai Lake, which is widely recognized by vacationersfor its natural spaces. Despite being one of the most representative ecological reserves in the country, annual waterquality reports indicate the presence of a high content of pollutants; mainly nitrogen, phosphorus, andfecalcolifoirs, among others. These conditions promote the proliferation of cyanobacteria which consume the available oxygenand compromise the reserve’s flora and fauna. Following several laboratory tests, the present work has the objective of evaluating the impact of thepark’s recently constructed wetland’son the treatment of residual waters.There are several parameters evaluated in thisstudy of final wastewater discharge disposal treatmentthrough a constructed wetland of horizontal flow with Typhadomingensis. The objective is to develop an adequate system for the treatment of residual waters that can be replicated in places with similar conditions.METHODS: The evaluation consisted of analyzing the residual water and finding the removal percentage for each of the following parameters such as chemical oxygen demand; biochemical oxygen demand; total phosphorus; total nitrogen; fecal coliforms; hydrogen potential; and temperature. The quality of the treated water was determined by comparing it with the limits established in Article 7 of Resolution Number 222/02 of the Environment Secretary for effluents. The results demonstrate that this system is aviableoption for the removal of fecal coliforms and nutrients such as phosphorus and nitrogen.FINDINGS: In terms of the quality of the treated water, the parameters studied are within the limits,established by Resolution Number 222/02of the Environment Secretary for Class 2 waters, for water to be discharged into the receiving body. The results obtainedwere: 88.9 percent fecal coliform removal; 84.9 percent total nitrogen; 73.3 percentchemical oxygen demand; 61.4 percent biochemical oxygen demand; and 14.2 percent Total Phosphorus. Considering Resolution 222/02, the biochemical oxygen demand, Total Nitrogen, and Total Phosphorus were outside the admissible limits.CONCLUSION: It is very feasible for wastewater generated in public parks to be treated through the construction of sub-surface flowwetlands.This study confirms that the treated wastewater is within the establishedlimitsfor all the parameters: temperature, hydrogen potential, biochemical oxygen demand, chemical oxygen demand, total nitrogen, total phosphorus, and fecal coliforms. This model of water treatment can be easily adopted.
Environmental Science
M. Samimi; M. Shahriari Moghadam
Abstract
phenol and phenolic compounds are among the most recognized environmental pollutants which exist in industrial wastewater and enter the biological cycles due to the solubility in water. Bioremediation is one of the cost-effective and Eco-friendly methods for phenol removal. In this study, the most effective ...
Read More
phenol and phenolic compounds are among the most recognized environmental pollutants which exist in industrial wastewater and enter the biological cycles due to the solubility in water. Bioremediation is one of the cost-effective and Eco-friendly methods for phenol removal. In this study, the most effective phenol-degrading bacterial strain was isolated and identified from the shores of the Oman Sea by 16S rDNA. The optimal conditions of various factors, such as pH, temperature, carbon to nitrogen ratio and salinity for the phenol biodegradation, were determined using the experimental design based on Taguchi method with L9 array (34). Ability of the isolated strain (Halomonas elongata strain O-CH1) in degradation of different phenol concentrations was analyzed. The optimum operating conditions for phenol removal were determined in pH value of 8, temperature of 35 ˚C, carbon to nitrogen ratio of 100:30 (g/L) and salinity of 35 (g/L). In these conditions, 97% of the phenol was removed from the mediums. According to the optimization results, salinity and pH were the most influential factors in the biodegradation of phenol. The O-CH1 was able to grow and degrade phenol at concentrations of 250 mg/L to 1500 mg/L. Considering the high potential of this strain for phenol degradation, determining the optimal conditions for the biodegradation and its efficacy at high concentrations of phenol, the findings in this study can be used in the biological treatment of phenolic wastewater.
S. Antwi-Akomea; B. Fei-Baffoe; E.J.D. Belford; M. Borigu
Abstract
The present study investigated the coupling effect of biodegradation and media filtration in treating hydrocarbon contaminated water. The study recorded reductions in total petroleum hydrocarbon, total dissolved solids, turbidity and microbial load. The study was essentially a simulated pump and treat ...
Read More
The present study investigated the coupling effect of biodegradation and media filtration in treating hydrocarbon contaminated water. The study recorded reductions in total petroleum hydrocarbon, total dissolved solids, turbidity and microbial load. The study was essentially a simulated pump and treat process that involved the pumping of hydrocarbon contaminated water for treatment in a locally designed multi-stage bioreactor incorporated with media filtration. A mixed consortium of hydrocarbon-eating microbes was applied in the study. Hydrocarbon-eating microbes were isolated from hydrocarbon contaminated soils obtained from selected mechanic workshops. Bamboo chips and coconut husk chips were applied as support media for microbial attachment within the bioreactor compartment of the treatment setup. Applied support media were approximately 2-4 cm in size. Media filters applied comprised three locally manufactured candle filters two of which were respectively impregnated with granular activated charcoal and sand. The coupling effect of biodegradation and media filtration recorded over 99 % (> 8.7 mg/L) total petroleum hydrocarbon removal. Microbial load reduction ranged from 3.57±0.11E+20 to 7.45±0.26E+20 Colony forming unit/mL, total dissolved solids reduction from 30.00±5.66 to 131.00±0.00 mg/L and turbidity reduction from 39.00±1.41 to 123.50±0.71 nephelometric turbidity units. Biodegradation accounted for 69.70±0.63 and 90.72±2.36 % total petroleum hydrocarbon removal respectively for bamboo chips and coconut husk chips.
Environmental Science
O. Calderon; H. Porter-Morgan; J. Jacob; W. Elkins
Abstract
Newtown Creek is an industrial waterway and former tidal wetland in New York City. It is one of the most polluted water bodies in the United States and was designated as a superfund site in 2010. For over a century, organic compounds, heavy metals, and other forms of industrial pollution have disrupted ...
Read More
Newtown Creek is an industrial waterway and former tidal wetland in New York City. It is one of the most polluted water bodies in the United States and was designated as a superfund site in 2010. For over a century, organic compounds, heavy metals, and other forms of industrial pollution have disrupted the creek’s environment. The creek is also impacted by discharges from twenty combined sewer overflow pipes, which may deposit raw sewage or partially treated wastewater directly into the creek during heavy or sustained rain events. Combined sewer overflow events and associated nutrient over-enrichment at the creek drive eutrophication and subsequent hypoxia. At the current study, three sites were sampled one week apart during a dry period and a wet period, where indication of a combined sewage overflow event could be detected. 16s rRNA high-throughput sequencing from these three sites collectively yielded over 1000 species of bacteria belonging to twenty-two classes. Based on these data, it is hypothesized that differences identified in the microbiome on wet versus dry days are as a result of combined sewage overflow, street runoff, and additional fluctuations in the creek’s environment associated with rain. It was found that after a combined sewer overflows event, the levels of Gamma Proteobacteria increased while the levels of Actinobacteria decreased. However, levels of bacteria stayed relatively unchanged at a site further away from combined sewer overflows discharge. Species found in Newtown Creek include pelagic, marine, human and animal pathogens, hydrocarbonoclastic, and other environmental microbes.