

Global Journal of Environmental Science and Management (GJESM)

Homepage: https://www.gjesm.net/

NUMBER OF TABLES

7

ORIGINAL RESEARCH ARTICLE

Ecotoxicological insight of phytochemicals, toxicological informatics, and heavy metal concentration in *Tridax procumbens* L. in geothermal areas

N.B. Maulydia¹, R. Idroes^{2,*}, K. Khairan², T.E. Tallei³, F. Mohd Fauzi⁴

¹ Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia

² Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

³ Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado, Indonesia

⁴ Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia

ARTICLE INFO	ABSTRACT
Article History: Received 09 June 2023 Revised 13 August 2023 Accepted 22 September 2023	BACKGROUND AND OBJECTIVES: <i>Tridax procumbens</i> L. is a plant that grows abundantly in the le-Seu'um geothermal area in Aceh Province, Indonesia. The objective of this study is to determine metabolite compounds from <i>Tridax procumbens</i> plants in a geothermal area using qualitative and quantitative analyses. In addition, the contents of six heavy metals in plants and their toxicology were assessed using an in silico approach.
Keywords: Geothermal area Heavy metals Ie-Seu'um Mount Seulawah Agam Phytol Tridax procumbens DOI: 10.22034/gjesm.2024.01.23	METHODS: The ethanolic extract of <i>Tridax procumbens</i> was analyzed qualitatively using reagents to determine the contents of secondary metabolites such as flavonoids, alkaloids, tannins, steroids, triterpenoids, and saponins. In addition, quantitative analysis was conducted using gas chromatography-mass spectroscopy to obtain the chromatograms and mass spectra of the metabolite compounds of the ethanolic extract of <i>Tridax procumbens</i> , which were used in computational toxicology analysis using a simplified molecular input system in a predictor server. Atomic absorption spectrometry was conducted to confirm the contents of six heavy metals harmful to medicinal plants. FINDINGS: The results showed that <i>Tridax procumbens</i> from the <i>le-Seu'um</i> geothermal area, Aceh, has secondary metabolites such as flavonoids, saponins, steroids, and tannins, with phytol from diterpenoid group having the highest content (32.72 percent). Toxicological analysis showed that the compounds in the ethanolic extract of <i>Tridax procumbens</i> were nontoxic or inactive in five toxicity parameters. The other results of the heavy metal analysis showed the dominance of chromium among the other six metals tested (copper, not detected; cadmium, 0.91 ± 0.03 milligram per kilogram; zinc, 3.50 ± 0.03 milligram per kilogram; and chromium, 13.81 ± 0.07 milligram per kilogram. CONCLUSION: This study highlights the unique secondary metabolite composition of <i>Tridax procumbens</i> under such extreme conditions and underscores the potential implications of heavy metal accumulation in plants in geothermal areas.

NUMBER OF REFERENCES

47 *Corresponding Author:

Email: *rinaldi.idroes@usk.ac.id* Phone: +6281 9737 44077 ORCID: 0000-0003-2264-6358

Note: Discussion period for this manuscript open until April 1, 2024 on GJESM website at the "Show Article".

NUMBER OF FIGURES

INTRODUCTION

Heavy metal contamination is a potential problem in geothermal regions. Effluents containing heavy metals from geothermal energy sources are rare and difficult to interpret because of interference from geysers and other naturally existing thermal phenomena (Sabadell and Aaxtmann, 1975; Sabilillah et al., 2023). Geothermal fluids are prone to having elevated chemical concentrations, which can have a negative effect on nearby water sources. One of the hydrothermal areas in Aceh Province, Indonesia, is Ie-Seu'um (local name: hot air), which is reported to have the highest arsenic-containing hot springs with levels of 166.73 ± 0.0081 microgram per liter (µg/L), (Irnawati et al., 2021). le-Seu'um is a hot spring which is one of the manifestations of Mount Seulawah Agam with temperatures up to 86.09 degress Celsius (°C), (Idroes et al., 2019). The examination of the chloride-bicarbonate-sulfate (Cl-HCO₃-SO₄) triangle diagram and Piper diagram indicates that the hydrological characteristics and prevailing chemical composition of the fluids in Ie-Seu'um are primarily chloride based, with significant amounts of sodium, potassium, and chloride ions (Idroes et al., 2019). The potential for pollution caused by trace heavy metals originating from geothermal sources is considerable, but available field measurements are limited. The Seulawah Agam mountain is known as one of the most active volcanoes in Aceh Province, Indonesia. Aceh Province is well known for its many geothermal sites, including Ie-Seu'um, Ie-Jue, and Ie-Brouk in the Aceh Besar District. Surface manifestations of geothermal locations include thermal springs, gases or solfatara, streaming earth, altered rock, and phreatic eruptions. Geological phenomena have the ability to change ambient environmental conditions, such as temperature, moisture levels, and humidity (Idroes et al., 2019). The flora found in these geothermal regions possesses distinct characteristics and synthesizes metabolic chemicals that are associated with various health advantages (Nurasikin et al., 2020). Limited study has been conducted on plants in geothermal areas in Aceh Province. However, the findings of existing studies indicate the promising potential of these plants as candidates for pharmaceutical applications. The investigation of the possibility of utilizing weeds from geothermal zones as complementary-based therapy warrants further exploration. Currently, published research on the exploration of geothermal medicinal plants, particularly plants from the Asteraceae family, is limited. The Asteraceae family, also known as Compositae, is considered to be among the most extensive families of flowering plants, encompassing a remarkable assemblage of over 1600 genera and approximately 25.000 species distributed across various regions of the world (Rolnik and Olas, 2021). Asteraceae has a high biodiversity that spreads across all regions in all conditions and continents, except Antarctica (Funk et al., 2005). Many species of the Asteraceae family have the rapeutic properties and have been used in traditional medicine for a long time. Certain members of this family have been cultivated for over three millennia, largely for its nutritional and medicinal utilities (Rolnik and Olas, 2021). One member of this family is the plant Tridax procumbens L., described by Linnaeus in 1753, with various pharmaceutical and traditional uses (Ingole et al., 2022). T. procumbens is native to Mexico and is found southward throughout Central America and the majority of South America, demonstrating its robust capacity for proliferation and dissemination due to its extensive natural occurrence over tropical and subtropical regions worldwide (PPQ, 2018). T. procumbens is a perennial plant with light green color, 15–40 centimeter (cm) height, roots that emerge from nodes, stems that emerge from the base of the wood, and ovate to lanceolate hairy leaves that are 4–30 millimeter (mm) long (Powell, 1965). In the Ie-Seu'um geothermal area, T. procumbens can be seen around hot springs and surrounding areas (Fig. 1). The soil conditions in the geothermal area surrounding the spring of Ie-Seu'um exhibit temperatures ranging from approximately 27.16°C to 36.13°C (Irnawati et al., 2021). The findings of the study by Chauhan and Johnson (2008) indicated that T. procumbens exhibits optimal seed germination ability in temperature conditions of 35°C/25°C and 30°C/20°C. In addition, the research suggests that the seed germination of *T. procumbens* is significantly enhanced under light conditions compared to dark conditions, with a range of 58 percent (%) to 70% germination observed. This observation implies that T. procumbens plants thrive in geothermal environments because of their adaptive traits that enable them to tolerate soil conditions characterized by elevated temperatures.

Fig. 1: T. procumbens plants

Medicinal plants are often used over a long period to improve health, but this can lead to the accumulation of harmful heavy metals in the body, which can cause various health problems if not managed properly (Kandić et al., 2023; Samimi and Mansouri, 2023). T. procumbens plants are used in traditional medicine, but research on its chemical content is limited. Currently, research using computational or in silico techniques is growing rapidly. Various research using in silico approaches such as quantitative relationship structure analysis (Noviandy et al., 2023) and molecular docking to molecular dynamics (Tallei et al., 2020). This currently study we conducted research that included i) qualitative (using reagents) and quantitative (using gas chromatography-mass spectroscopy (GC-MS)) phytochemical analyses of plant constituents, ii) the assessment of the heavy metal (i.e., lead (Pb), copper (Cu), chromium (Cr), cadmium (Cd), iron (Fe), and Zinc (Zn)) concentrations in the ethanolic extract of T. procumbens, and (iii) toxicological informatics studies using an in silico approach. The objective of the study is to investigate and analyze the chemical composition of T. procumbens, a plant species found in the le-Seu'um geothermal area, Aceh.

371

Specifically, the study aims to achieve the following objectives: confirmation of secondary metabolites, identification of dominant bioactive compounds and their toxicology using an *in silico* approach, and analysis of the heavy metal concentration of the ethanolic extract *T. procumbens*. This study was conducted in Aceh Province, Indonesia, in 2023.

MATERIALS AND METHODS

Plant preparation and extraction

T. procumbens was obtained from the manifestation geothermal of Seulawah Agam Ie-Seu'um, which is located at 05°32'50" north (N), 95°32'45" east (E) (Fig. 2). The plant parts that were collected include branches, leaves, and flowers. The voucher for the species was given the number B-2238 in National Research and Innovation Agency, Indonesia. To prepare the extracts, various plant parts were mixed, cleaned, air-dried at room temperature, and then ground into powder. Maceration at a ratio of 1:10 weight: volume (w:v) for three days resulted in the production of an ethanolic extract. Immediately after that, extract was dried using a rotary evaporator (Butchi Rotavapor[®], Switzerland), followed by a vacuum filtering process to obtain a dry extract.

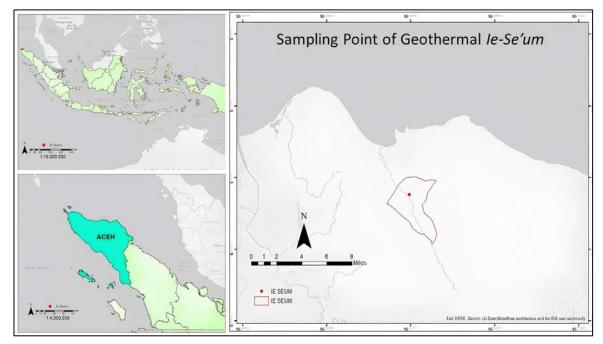


Fig. 2: Geographical location of the study area in *Ie-Seu'um*, Indonesia

Phytochemical analysis

Phytochemical analysis was conducted on six classes of secondary metabolites, namely, flavonoids, tannins, saponins, terpenoids, steroids, and alkaloids. The method used in this study was based on the method used by Harbone (1987), with slight modifications.

Gas chromatography-mass spectroscopy (GC-MS) analysis

GC–MS was conducted using a TRACE 1310 GC and single quadrupole (iSQ) 7000 equipped with a TraceGOLD TG-35MS column- 30 meter (m) × 0.25 millimeter (mm) × 0.25 micrometer (μ m); Thermo Fisher Scientific, Inc., United States of America) to examine the ethanolic extracts of *T. procumbens*. The temperature of the injector was kept constant at 250°C, and the ion source temperature was adjusted to 250°C. The programmed temperature of the column was set to gradually increase from 60°C to 280°C at a rate of 10°C/minutes. Helium was used as the carrier gas at a flow rate of 1 µL/min. Mass spectra were acquired using an energy level of 75 electron volt (eV) while scanning a range of 400 to 500 atomic mass units (Amu).

Heavy metal analysis

The samples for heavy metal analysis were prepared by placing plant samples that weighed up to 1.00 ± 0.05 gram (g) in a tube vessel, adding 10 ± 0.1 milliliter (mL) of pure nitric acid (HNO₂) (Merck, Darmstadt, Germany), and then placing the tube vessel in a microwave to destruct the sample. The destruction was carried out at 180°C for 10 minutes and then the analyte was cooled to room temperature. After the destruction step was completed, the analyte was transferred to a 25 mL volumetric flask and diluted with demineralized water. The test sample solution was analyzed using an atomic absorption spectrophotometer (AAS) (PinAAcle 900H PerkinElmer, Waltham, MA, USA). The calibration curves for the metals Pb, Cd, Cu, Cr, Fe, and Zn were established using specific wavelengths of 217.0, 220.8, 324.8, 357.9, 248.1, and 213.9 nanometer (nm), respectively. These wavelengths were employed in accordance with the guidelines from Association of Official Analytical Collaboration (AOAC) International (AOAC official method, 2022).

Method validation

Method validation was conducted to determine

No	Daramatara		Heavy metals					
No.	Parameters	Pb	Cd	Cu	Cr	Fe	Zn	
1	Slope	0.0402	0.2422	0.0991	0.0519	0.0526	0.0419	
2	Intercept	0.0001	0.0050	-0.0005	1.77 × 10 ⁻⁵	0.0007	0.0101	
3	R ²	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	
4	LoD	0.018	0.016	0.022	0.019	0.021	0.019	
5	LoQ	0.049	0.056	0.067	0.042	0.065	0.066	
6	Precision (%RSD)	1.07	1.09	1.09	1.03	0.98	1.12	
7	Recovery (%R)	100.99	100.35	100.29	100.49	100.33	100.82	

Table 1: Method validation

Table 2: SMILES structure of metabolite compounds

SMILES structure	Compound CID
CC1=CC(N=N1)(C2=CC=CC=C2)C3=CC=CC=C3	605783
С[С@@H](ССС[С@@H](С)ССС/С(=С/СО)/С)СССС(С)С	5280435
CC(C)CCCC(C)CCCC(=C)C=C	10446
CCCCC/C=C\C(C)CCCCCCCC(=O)C	5363222
00(0=)000000000000000000000000000000000	8181
CC(C)(C)C1=CC(=CC(=C1O)C(C)(C)C)CCC(=O)OC	62603
0(0=))))	985
CCCCCCC/C=C\CC#CC#C[C@H](C=C)O	5469789
0(0=2)2222222222222222222222222222222222	5282800
CC/C=C\C/C=C\C/C=C\CCCCCCC(=O)O	5280934

the reliability of the research results (Winarsih et al., 2023). To achieve linearity, six different concentration levels of each metal were determined and expressed using the coefficient of determination (R²). Method precision was determined by performing measurements six times on one concentration of standard solution to percent of relative standard deviation (%RSD), and the value of recovery was determined by performing a spike on the sample percent of recovery (%R). The values for the limits of detection (LoD) and quantification (LoQ) for each metal were determined based on the standard curve, and the measurement uncertainty for each metal was computed using the LINEST function in Microsoft Excel based on the standard deviation of concentration (Sc). As shown in Table 1, method validation exhibited a significant level of linearity and sensitivity, demonstrating acceptable levels of recovery and precision. In addition, every experiment displayed a strong R² of 0.9999. This finding suggests that the calibration curve exhibited a strong association between the standard concentration and the instrument response.

Toxicology computational analysis

The chemical compounds that were successfully identified using GC-MS then underwent verification for their presence in the PubChem database (Rachmawati et al., 2022). Data regarding the PubChem identifier using the compound identifier (CID), chemical formula, simplified molecular input line-entry system (SMILES), and two-dimensional structure were collected (Kim et al., 2023). Then, toxicology computational analysis was conducted using a ProTox-II system (Banerjee et al., 2018). Toxicology assessments were conducted using the SMILES structure presented in Table 2. Four toxicity endpoints (carcinogenicity, immunotoxicity, mutagenicity, and cytotoxicity) and one organ toxicity (hepatotoxicity) were subjected to probability calculations with values ranging from 0 to 1, and the final results were either active or inactive.

RESULTS AND DISCUSSION

Qualitative phytochemical analysis

Qualitative analysis commonly entails the identification of specific compounds or chemical qualities using diverse reagents, which are

N.B. Maulydia et al.

Table 3: Phy	/tochemical	analys	is using	qualitative	methods

No	Secondary metabolites	Results
1	Alkaloids	-
2	Flavonoids	+
3	Saponins	+
4	Steroids	+
5	Triterpenoids	-
6	Tannins	+

(-) absent; (+) present

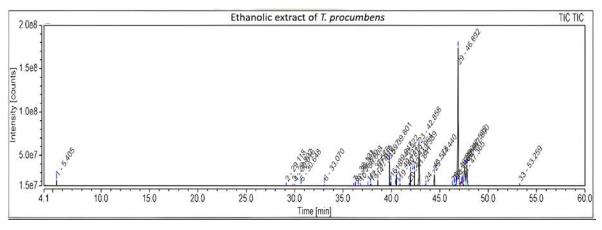


Fig. 3: Total ion chromatogram of T. procumbens extract

specialized chemicals employed for testing purposes (Rachmawati et al., 2022). Phytochemical analysis showed that T. procumbens plants from the le-Seu'um geothermal area in Aceh Province have secondary metabolites such as flavonoids, saponins, steroids, and tannins (Table 3). These results corroborate that there is diversity in the content of secondary metabolite compounds in these plants. In the study conducted by Ingole et al. (2022), it was found that the metabolite compounds derived from T. procumbens include alkaloids, flavonoids, saponins, tannins, steroids, terpenoids, essential oils, carbohydrates, carotenoids, and various other chemicals. The study by Christudas et al. (2012) showed that the phytochemical screening of T. procumbens using different solvents such as petroleum ether, chloroform, and ethanol extract showed the presence of alkaloids, tannins, steroids, purines, carbohydrates, and proteins. The diversity of the active compounds found in *T. procumbens* may hold promise as a complementary medicine. Recent studies have shown that T. procumbens extracts have several pharmacological activities, including antihyperuricemic, antioxidant, antibacterial, and antifungal activities (Andriana *et al.*, 2019).

Quantitative phytochemical analysis

Gas chromatography–mass spectroscopy analysis was performed using a nonpolar column. The results showed 32 peaks in the total ion chromatogram analysis with a running time of 60 min (Fig. 3). The results showed one highest peak with a retention time of 46.98 min known as phytol. Another study also found phytol in *T. procumbens* mainly in the leaf essential oil with a percentage of 0% to 7.2% (Coulibaly *et al.*, 2020).

In addition, metabolite compounds with a percentage area >2% are classified in Table 4. Terpenoids (neophytadiene and phytol) and fatty acids (hexadecanoic acid methyl ester, n-hexadecanoic acid, 10(E),12(Z)-conjugated linoleic acid, and 9,12,15-octadecatrienoic acid, (Z,Z,Z)) dominated these results.

As shown in Table 4, the compound with the highest relative percentage was phytol. Phytol is an isoprenoid alcohol with 20 carbon atoms and

Global J. Environ. Sci. Manage., 10(1): 369-384, Winter 2024

Compound name	Retention time (min)	Relative area (%)	Molecular formula	Chemical structure
3,3-Diphenyl-5- methyl-3H-pyrazole	30.648	3.12	$C_{16}H_{14}N_2$	
Neophytadiene	39.801	4.14	C ₂₀ H ₃₈	H H H
7-Methyl-Z- tetradecen-1-ol acetate	40.522	2.78	C17H32O2	H H O O O O
Hexadecanoic acid, methyl ester	41.964	3.32	C17H34O2	~°
Benzenepropanoic acid, 3,5-bis(1,1- dimethylethyl)-4- hydroxy-, methyl ester	42.389	3.73	C18H28O3	
n-Hexadecanoic acid	42.858	9.23	$C_{16}H_{32}O_2$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(S,Z)-Heptadeca-1,9- dien-4,6-diyn-3-ol	44.44	3.72	C17H24O	H. O C C C C C C

Table 4: Chemical profiling of the T. procumbens extract using GC-MS

Chemical Characterization of Tridax procumbens L

Compound name	Retention time (min)	Relative area (%)	Molecular formula	Chemical structure
Phytol	46.892	32.72	C ₂₀ H ₄₀ O	H O H
10(E),12(Z)- Conjugated linoleic acid	47.582	7.94	C ₁₈ H ₃₂ O ₂	H.O.
9,12,15- Octadecatrienoic acid, (Z,Z,Z)-	47.8	6.81	C18H30O2	

Continued Table 4: Chemical profiling of the T. procumbens extract using GC-MS

1 double bond ($C_{20}H_{40}O$) that is known to have the highest peak area with a value of 32.72%. Phytol is a compound of the terpenoid group, that is, acyclic diterpenoids, which also metabolize chlorophyll in plants; therefore, it is widely available in nature. Chlorophyll is the most abundant photosynthetic pigment in higher plants (Gutbrod et al., 2019). During the aging process, chlorophyll is hydrolyzed to release phytol and free chlorophyllide in a ratio of 1:1 (Ischebeck et al., 2006). As shown in the results of the GC-MS analysis, the most abundant compound was phytol. It can be connected that T. procumbens weed plants in the *le-Seu'um* geothermal area have a high chlorophyll content and will be useful for the surrounding environment because it increases oxygen levels in the air. Phytol is also known as the precursor of synthetic vitamin E and vitamin K (Santos et al., 2013), which are known to be toxic to breast cancer cells, that is, Michigan Cancer Foundation-7 (MCF7), and have the potential to provide antioxidant and antinociceptic effects (Pejin

et al., 2014). Pharmacokinetic analysis of phytol was found to have good characteristics as a drug candidate and can be used against enzyme targeted *Staphylococcus aureus* (Maulydia *et al.*, 2023). Other substances in Table 2 support the uniqueness of *T. procumbens* growing in severe environments, such as in geothermal areas, because geographical origin influences the makeup of bioactive compounds (Imelda *et al.*, 2024).

Heavy metal concentrations

Metals can be categorized into two groups based on their relevance to human metabolism: essential and nonessential. Metals such as Fe, Cu, and Zn play crucial roles in human metabolism, but excessive amounts of these metals can lead to hazardous effects (Samimi and Nouri, 2023). Metals such as Pb, Cd, and mercury (Hg) lack nutritional and helpful properties for metabolism and can exert hazardous effects on living organisms even when present in extremely low amounts (Varol and

Global J. Environ. Sci. Manage., 10(1): 369-384, Winter 2024

Table 5: Heavy meta	I contents of	f the ethanoli	c extract of	T. procumbens
---------------------	---------------	----------------	--------------	---------------

Comple		Heav	y metal concentrations	s ± Sc milligram per kil	ogram (mg/kg)	
Sample –	Pb	Cu	Cr	Cd	Fe	Zn
Ethanolic extract of <i>T.</i> procumbens	6.42 ± 0.05	N.D.	13.81 ± 0.07	0.91 ± 0.03	4.65 ± 0.02	3.50 ± 0.03

Metals	WHO recommended limits for toxic metals in herbal medicines and products	Possible adverse effects on the human body	Sources
Cu	-	Nausea, vomiting, and diarrhea	Balali-Mood et al., 2021
Cd	0.3 mg/kg	Kidney dysfunction, prostate, breast cancer, osteomalacia, and reproductive deficiencies	Naseri <i>et al.,</i> 2021
Cr	-	Respiratory irritation, lung damage, and cancer	Naseri <i>et al.,</i> 2021
Fe	-	Nausea, vomiting, and diarrhea	Balali-Mood et al., 2021
Zn	-	Nausea, vomiting, and diarrhea	Balali-Mood et al., 2021
Pb	10 mg/kg	Developmental delays in children, anemia, and damage to the nervous system	Naseri <i>et al.,</i> 2021

Table 6: Heavy metal limits and adverse effects

Sunbul, 2020; Sulistyowati *et al.*, 2022; Samimi *et al.*, 2023; Nurhasanah *et al.*, 2023; Samimi, 2024). Heavy metals can be present in small amounts in soil and plants because living organisms need certain metals to perform metabolic processes. According to the validated assay method, this study presents the quantities of the heavy metals found in the ethanolic extract of *T. procumbens* leaves taken from *Ie-Seu'um*, as shown in Table 5.

The validated methodology was utilized to assess the amounts of Pb, Cu, Cr, Fe, Zn, and Cd in the geothermal area known as *le-Seu'um* by employing AAS. As shown in Table 5, the heavy metal concentrations in the ethanolic extract of T. procumbens in Ie-Seu'um were Cu, not detected; Cd, 0.91 mg/kg; Zn, 3.50 mg/kg; Fe, 4.65 mg/kg; Pb, 6.42 mg/kg; and Cr, 13.81 mg/kg. Of the six metals found in the ethanolic extract of T. procumbens, chromium (Cr: electron configuration: [Ar] 3d⁵4s¹) had the highest concentration of 13.81 mg/kg. Cr is a trace element that is essential for the metabolism of glucose. Research conducted on both humans and animals has shown evidence for the crucial significance of small quantities of Cr(III) 50 µg/day to $200 \,\mu g/day$ in regulating proper glucose metabolism. The administration of substances through the oral route does not pose a significant risk of toxicity (Dayan and Paine, 2001). Although Cr(III) interacts with biomolecules such as deoxyribonucleic acid, its limited capacity to traverse cell membranes has been linked to its diminished biological and toxicological effects. Currently, conclusive research that establishes the indispensability of chromium in biomolecular or physiological mechanisms is lacking (Pavesi and Moreira, 2020). Shamsul and Mangaonkar (2010) reported that T. procumbens plants from India have the highest amounts of Cu at 29.96 ppm; Pb, 6.48 ppm, and Cd, 0.46 ppm. Existing literature does not provide any specific information regarding the impact of heavy metals present in T. procumbens L. on human health. Additional investigation is required to ascertain the potential health implications associated with the consumption of T. procumbens L. that is contaminated with heavy metals. According to the guidelines provided by the World Health Organization (WHO), there are specific restrictions imposed on the presence of hazardous metals such as Cu and Pb in medicines and herbal products. The suggested limits set by WHO state that the permissible levels of Cu should not exceed 0.3 mg per/kg and the maximum allowable concentration of Pb should not exceed 10 mg/kg (WHO, 2007). On the basis of the available evidence, the concentrations of the metals present in the ethanol extract of T. procumbens did not exceed the set limits of Cu (not detected) and Pb (6.42 ±

Compound name Pred. 3,3-Diphenyl-5-methyl-3H- Inactive pyrazole Phytol Inactive Neophytadiene Inactive 7-Methyl-Z-tetradecen-1-ol Inactive	Droh									<mark>ر</mark> ا	וסאוכורא
_	LIUU.	Pred.	Prob.	Pred.	Prob.	Pred.	Prob.	Pred.	Prob.	(mg/kg)	class
decen-1-ol	0.51	Active	0.59	Inactive	0.99	Inactive	0.54	Inactive	0.76	1000	4
idecen-1-ol	0.79	Inactive	0.76	Inactive	0.99	Inactive	0.97	Inactive	0.85	5000	2
l-Z-tetradecen-1-ol	0.79	Inactive	0.73	Inactive	0.99	Inactive	0.98	Inactive	0.81	5050	9
acetate	0.76	Active	0.50	Inactive	0.88	Inactive	0.98	Inactive	0.74	3460	ß
Hexadecanoic acid, methyl ester Inactive	0.58	Inactive	0.55	Inactive	66.0	Inactive	0.98	Inactive	0.73	5000	5
Benzenepropanoic acid, 3,5- bis(1,1-dimethylethyl)-4-hydroxy- Active , methyl ester	0.55	Inactive	0.60	Inactive	0.96	Inactive	0.90	Inactive	0.77	5000	ß
n-Hexadecanoic acid	0.52	Inactive	0.63	Inactive	0.99	Inactive	1	Inactive	0.74	006	4
(S,Z)-Heptadeca-1,9-dien-4,6- diyn-3-ol	0.69	Inactive	0.61	Inactive	0.69	Inactive	0.95	Inactive	0.80	8000	9
10(E),12(Z)-Conjugated linoleic Inactive acid	0.55	Inactive	0.64	Inactive	0.98	Inactive	1	Inactive	0.71	3200	ß
9,12,15-Octadecatrienoic acid, Inactive (Z,Z,Z)-	0.54	Inactive	0.63	Inactive	66.0	Inactive	0.95	Inactive	0.71	10000	9
Pred = Prediction Prob = Probability I.D= Lerhal dose 50%											

Table 7: Toxicology prediction of metabolite compounds in T. procumbens

N.B. Maulydia et al.

0.05 mg/kg). These metal contents as chemical compounds may also have harmful effects on the human body if taken in large quantities (Samimi and Shahriari Moghadam, 2021). Some of these illnesses are chronic, with gastrointestinal issues being the most frequent (Table 6).

Similar findings regarding the presence of heavy metals in Chromolaena odorata (local name: seurapoh) leaves were reported by Abubakar et al., (2023), who found Cd (0.0219±0.005) and Pb of 0.0181 to 0.0356 mg/kg, but no As or Hg. The ability of plants to absorb and utilize heavy metals in their metabolism may explain the discrepancy in the results of the two analyses. T. procumbens has been shown to possess significant bioremediation capabilities, particularly in the removal of heavy metals such as Cr, Cu, Pb, and Cd from soil that has been contaminated by industrial effluents (Govarthanan et al., 2016). T. procumbens is also reported to have the ability to absorb heavy metals in large quantities. The desiccated leaves of T. procumbens can remove 91% of copper from a synthetic metal solution at pH 5.0 and 250 rpm with constant stirring. This adsorbent is an excellent choice for the adsorption of heavy metal ions in wastewater stream, including copper ions (Karthika et al., 2010). Due to its favorable characteristics, T. procumbens has potential as a viable option for the implementation of phytoremediation initiatives in regions characterized by significant levels of heavy metal contamination. It is essential to note that the risks associated with heavy metal contamination in geothermal regions can vary depending on the location and quantity of contamination. Consequently, it is essential to conduct field measurements and research to better comprehend the environmental issue and its potential health dangers. This research is needed to explore the potential and safety of plants in geothermal areas if they are to be used as traditional medicines.

Ecotoxicological analysis

The GC–MS analysis revealed the abundance of compounds in the ethanol extract of *T. procumbens*. Some of these compounds are hazardous to other organisms, such as humans, animals, microbes, and plants. Ecotoxicology of secondary metabolite compounds in plants investigates the potential impact of these compounds on ecosystems and the

creatures that inhabit them. Ecotoxicology is one of the fields of science that studies the impact of chemicals or other pollutants on the environment and living organisms. One approach in measuring the toxicity impact of these substances is using an in silico approach (CDESCS, 2014). The in silico approach in ecotoxicology refers to the use of software and computers to predict the potential impact of a substance on organisms and ecosystems without the need to conduct direct trials on living organisms (Benfenati, 2013). T. procumbens is frequently used as a traditional medicine, and the toxicological discussion in this paper refers to the human body. In this particular study, the ecotoxicology of the secondary metabolites from the ethanolic extracts of T. procumbens was analyzed using a ProTox-II system. The ProTox-II model utilizes a combination of molecular similarity, fragment propensities, most frequent features, and machine learning techniques, specifically employing a cross-validation method known as fragment similarity-based cluster. This approach involves the use of 33 different models to predict a range of toxicity endpoints, including acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes in Tox21 pathways, and toxicity targets (Banerjee et al., 2018). Table 7 shows the results of the toxicity prediction against five toxicity targets, showing the dominance of nontoxic. The results of the hepatotoxic analysis showed that the compound 3,5-bis(1,1 dimethylethyl)-4-hydroxy-,methyl ester has an active potential with a probability of 0.55. Next, 3,3-diphenyl-5-methyl-3H-pyrazole with potential toxicity because it is carcinogenic with a probability of 0.59. The results of other tests show that all compounds have nontoxic potential in immunotoxicity, mutagenicity, and cytotoxicity. Toxicity examination also supported by the results of the lethal dose 50% (LD₅₀), which is the dose that causes 50% of subjects to die from a chemical after exposure in milligrams per kilogram of body weight. Toxicity classes are defined according to the globally harmonized chemical labeling classification system (GHS) ranging from class I (fatal) to class VI (nontoxic). Secondary metabolites from T. procumbens showed class 4 (harmful if swallowed 300 < $LD_{50} \leq 2000$), class 5 (may be harmful if swallowed 2000 < $LD_{50} \leq$ 5000), and class 6 (nontoxic LD_{so} > 5000). Research on acute oral toxicity studies in albino mice has been

conducted on extracts of T. procumbens, and the results showed that they did not cause acute toxicity or severe liver damage (Burgos-Pino et al., 2023). This supports the evidence that T. procumbens extracts are safe to consume at controlled doses. According to the findings of this investigation, toxicological informatics has been demonstrated to have the capability to determine the toxicity of the chemicals present in the ethanol extracts of T. procumbens. Understanding the aforementioned subject matter is of utmost significance because of its potential to offer comprehensive understanding of the adverse effects of metabolite compounds from plants on human health resulting from the consumption of traditional medicine and exposure to the environment.

CONCLUSION

T. procumbens is a plant species that can be found in the Ie-Seu'um geothermal area in Aceh Province, Indonesia. The primary purpose of this research is to determine whether this plant possesses secondary metabolites and to evaluate the plant's potential for usage in medical and therapeutic applications. Secondary metabolites are chemical substances produced by plants, and they frequently participate in a wide variety of biological processes. The research demonstrated that T. procumbens, which was collected from the geothermal region specified, contains secondary metabolites. These secondary metabolites include tannins, steroids, and saponins. It is important to note the presence of these chemicals because, in many cases, diverse pharmacological and therapeutic qualities are linked to them. The discovery of these secondary metabolites indicates that T. procumbens may have the potential for a variety of uses in the fields of medicine and therapy. Traditional medicine, medicines, and various other healthcare-related applications could all fall under this category of potential uses. The research highlights the presence of the diterpenoid phytol as one of the secondary metabolites that were found. The highest concentration of phytol was 32.72%. It is known that phytol possesses bioactive qualities, and the fact that there is a large amount of it in T. procumbens suggests that it may play a significant role in the pharmacological actions of the plant. This lends credence to the hypothesis that phytol-rich extracts of T. procumbens may provide a number of advantageous health effects. In addition, an investigation of the presence of heavy metals in T. procumbens was conducted using samples taken from the geothermal region, and a number of heavy metals were found. This aspect of the research is very important because it helps in determining whether T. procumbens is safe to use and whether it is suitable for a variety of applications. Understanding the presence of heavy metals is vital, particularly if the plant will be used for medical or nutritional purposes, because excessive amounts of heavy metals can be harmful to one's health. It is imperative to emphasize the significance of conducting studies of this nature to establish a cohesive connection between the state of a plant and the possible toxicity associated with its metabolite composition. The subsequent procedure involves performing tests on the biological activity of T. procumbens plants to verify their therapeutic potential and enhance their efficacy for medicinal purposes.

ACKNOWLEDGMENT

This research was funded by Kementerian Pendidikan, Kebudayaan, Riset dan Teknologi Nasional through "Program Magister Menuju Doktor Sarjana Unggul" scheme, grant number: [95/ UN11.2.1/PT.01.03/DRPM/2022].

CONFLICT OF INTEREST

The authors declare that there is no conflict of interests regarding the publication of this manuscript. In addition, ethical issues such as plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancy have been completely observed by the authors.

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other thirdparty material in this article is included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material

HNO,

iSQ

LD₅₀

LoD

LoQ

MCF7

т

Nitric acid

Meter

Single quadropole

Limits of detection

Limits of quantification

Lethal dose 50%

Michigan cancer

foundation-7

is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: http://creativecommons.org/licenses/by/4.0/

PUBLISHER'S NOTE

GJESM Publisher remains neutral with regard to jurisdictional claims in published maps and institutional afflictions.

A

ABBREVIATIONS		mg/kg	Milligram per kilogram
%	Percent	Min	Minute
°C	degrees Celsius	mL	Milliliter
AAS	Atomic absorption	mm	Millimeter
	spectrometry	Ν	North
AOAC	Association of Official Analytical Collaboration	N.D.	Not detected
Amu	Atomic mass units	nm	Nanometer
Cd	Cadmium	Pb	Lead
CDESCS	Committee on the Design	pН	Power of hydrogen
	and Evaluation of Safer Chemical Substitutions	Ррт	Part per million
CID		Pred	Prediction
-	Compound identifier	Prob	Probability
CI–HCO ₃ –SO ₄	Chloride–bicarbonate– sulfate	R	Recovery
ст	Centimeter	<i>R</i> ²	Coefficient of determination
Cr	Chromium	rpm	Rotation per minutes
Cu	Copper	RSD	Relative standard deviation
Ε	East	Sc	Standard deviation of
eV	Electron volt		concentration
Fe	Iron	SMILES	Simplified molecular input line-entry system
g	Gram		
GC–MS	Gas chromatography-mass	W:V	Weight:volume
	spectroscopy	WHO	World Health Organization
GHS	Globally harmonized chemical labeling	Zn	Zinc
	classification system	μg/L	Microgram per liter
Hg	Mercury	μm	Micrometer

REFERENCES

- Abubakar, A.; Yusuf, H.; Syukri, M.; Nasution, R.; Yusuf, M., Idroes, R., (2023). Heavy metals contamination in geothermal medicinal plant extract; Chromolaena odorata Linn. Global J. Environ. Sci. Manage. 9: 995– 1004 (10 Pages).
- Andriana, Y.; Xuan, T.D.; Quy, T.N.; Minh, T.N.; Van, T.M.; Viet, T.D., (2019). Antihyperuricemia, antioxidant, and antibacterial activities of Tridax procumbens L. Foods 8: 1–12 (12 pages).
- AOAC, (2002). AOAC official method 999.10, in: Evaluation. AOC International. 18–20 (**3 pages**).
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M., (2021). Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol., 12, 1–19 (19 Pages).
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R., (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 46: W257– W263.
- Benfenati, E., (2013). In silico methods for predicting drug toxicity, methods in molecular biology. Springer. 1425: 237-304 (68 pages).
- Burgos-Pino, J.; Gual-Orozco, B.; Vera-Ku, M.; Loría-Cervera, E.N.; Guillermo-Cordero, L.; Martínez-Vega, P.P.; Torres-Tapia, L.W.; Castro-Valencia, K.; Peraza-Sánchez, S.R.; Gamboa-León, R., (2023). Acute oral toxicity in BALB/C mice of Tridax procumbens and Allium sativum extracts and (3s)-16,17-didehydrofalcarinol. J. Ethnopharmacol., 301: 115840.
- Chauhan, B.S.; Johnson, D.E., (2008). Germination Ecology of two troublesome asteraceae species of rainfed rice: siam weed (Chromolaena odorata) and coat buttons (Tridax procumbens). Weed Sci. 56, 567– 573 (7 Pages).
- Christudas, S.; Kulathivel, T.M.; Agastian, P., (2012). Phytochemical and antibacterial studies of leaves of Tridax procumbens I. Asian Pac. J. Trop. Biomed., 2: S159–S161 (**3 pages**).
- CDESCS, (2014). A framework to guide selection of chemical alternatives. Committee on the Design and Evaluation of Safer Chemical Substitutions. The National Acedemic Press (281 pages).
- Coulibaly, A.; Soro, Y.; Siaka, S.; Nea, F.; Tonzibo, Z.F., (2020). Chemical variability of essential oils from the leaves of Tridax procumbens linn (Asteraceae) from five cities of Côte d'Ivoire. Int. J. Biol. Chem. Sci., 14: 1843–1852 (**10 pages**).
- Dayan, A.; Paine, A.J., (2001). Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol., 20: 439–451 (13 Pages).
- Funk, V.A.; Bayer, R.J.; Keeley, S.; Chan, R.W.L.; Gemeinholzer, B.; Schilling, E.; Panero, J.L.; Baldwin, B.G.; Garcia-Jacas, N.; Susanna, A.; Jansen, R.K.

(2005). Everywhere but antarctica: using a supertree to understand the diversity and distribution of the compositae. Biol.Skr., 55: 343-373 (**32 pages**).

- Govarthanan, M.; Mythili, R.; Selvankumar, T.; Kamala-Kannan, S.; Rajasekar, A.; Chang, Y.C., (2016).
 Bioremediation of heavy metals using an endophytic bacterium Paenibacillus sp. RM isolated from the roots of Tridax procumbens. 3 Biotech. 6: 1–7 (7 Pages).
- Gutbrod, K.; Romer, J.; Dörmann, P., (2019). Phytol metabolism in plants. Prog. Lipid Res., 74: 1–17 (**17** pages).
- Harborne, J.B., (1987). Phytochemical methods: A guide to modern techniques of plant analysis. Springer Dordrecht (**300 pages**).
- Idroes, R.; Yusuf, M.; Saiful, S.; Alatas, M.; Subhan, S.; Lala, A.; Muslem, M.; Suhendra, R.; Idroes, G.M.; Marwan, M.; Mahlia, T.M.I., (2019). Geochemistry exploration and geothermometry application in the north zone of seulawah agam, Aceh Besar District, Indonesia. Energies. 12: 4442 (17 pages).
- Imelda, E.; Khairan, K.; Lubis, R.R.; Taufik, K.; Rinaldi, I., (2024). Impact of environmental and geographical position on the chemometric classification of ethanol extracts from Isotoma longiflora leaves. Global J. Environ. Sci. Manage. 10: 1–14 (14 pages).
- Ingole, V. V.; Mhaske, P.C.; Katade, S.R., (2022). Phytochemistry and pharmacological aspects of Tridax procumbens (L.): A systematic and comprehensive review. Phytomed. Plus. 2: 100199 (26 pages).
- Irnawati, I.; Idroes, R.; Zulfiani, U.; Akmal, M.; Suhartono, E.; Safitri, E.; Jalil, Z., (2021). Assessment of arsenic levels in water, sediment and human. Water, 13(17): 23 (12 pages).
- Ischebeck, T.; Zbierzak, A.M.; Kanwischer, M.; Dörmann, P., (2006). A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem., 281: 2470–2477 (8 pages).
- Kandić, I.; Kragović, M.; Petrović, J.; Janaćković, P.; Gavrilović, M.; Momčilović, M.; Stojmenović, M., (2023). Heavy metals content in selected medicinal plants produced and consumed in Serbia and their daily intake in herbal infusions. Toxics. 11: 1–19 (19 Pages).
- Karthika, T.; Thirunavukkarasu, A.; Ramesh, S., (2010). Biosorption of copper from aqueous solutions using Tridax procumbens. Recent Res. Sci. Technol., 2: 86–91 (6 pages).
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E., (2023). PubChem 2023 update. Nucleic Acids Res. 51: D1373–D1380 (7 Pages).
- Maulydia, N.B.; Khairan, K.; Noviandy, T.R., (2023). Prediction of pharmacokinetic parameters from ethanolic extract mane leaves (Vitex pinnata I.) in geothermal manifestation of seulawah agam le-Seu'um, Aceh. Malacca Pharm., 1: 16–21 (6 pages).

- Naseri, K.; Salmani, F.; Zeinali, M.; Zeinali, T., (2021). Health risk assessment of Cd, Cr, Cu, Ni and Pb in the muscle, liver and gizzard of hen's marketed in East of Iran. Toxicol. Reports. 8: 53–59 (7 Pages).
- Ningsih, D.S.; Celik, I.; Abas, A.H.; Bachtiar, B.M.; Kemala, P., (2023). A review of the ethno-dentistry activities of Calotropis gigantea. Malacca Pharm., 1: 8–15 (8 pages).
- Noviandy, T.R.; Maulana, A.; Idroes, G.M.; Maulydia, N.B., (2023). Integrating genetic algorithm and lightgbm for qsar modeling of acetylcholinesterase inhibitors in alzheimer's disease drug discovery. Malacca Pharm., 1: 48–54 (**7 pages**).
- Nurhasanah; Sulistyowati, L.; Riani, E.; Cordova, M.R., (2023). Cadmium and lead uptake by wild swamp eel in the populous river. Global J. Environ. Sci. Manage., 9(3): 497-514 (18 pages).
- Pavesi, T.; Moreira, J.C., (2020). Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol., 40: 1183–1197 (15 Pages).
- Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A., (2014). Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res., 37– 41 (5 pages).
- Powell, A.M., (1965). Taxonomy of tridax (Compositae). Brittonia. 17: 47–96 (**50 pages**).
- PPQ, (2018). Weed Risk Assessment for Tridax procumbens L . (Asteraceae) – Coat buttons. United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine (PPQ), New York (26 pages).
- Rachmawati, R.; Idroes, R.; Suhartono, E.; Maulydia, N.B.; Darusman, D., (2022). In silico and in vitro analysis of tacca tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as antihypercholesterolemia agents. Molecules 27 (14 Pages).
- Rolnik, A.; Olas, B., (2021). The plants of the asteraceae family as agents in the protection of human health. Int. J. Mol. Sci., 22: 1–10 (**10 pages**).
- Sabilillah, A.M.; Palupi, F.R.; Adji, B.K.; Nugroho, A.P., (2023). Health risk assessment and microplastic pollution in streams through accumulation and interaction of heavy metals. Global J. Environ. Sci. Manage., 9(4): 719-740 (22 pages).
- Santos, C.C.M.P.; D.M.; Salvadori, M.S.; Mota, V.G.; Costa, L.M.; Almeida, A.A.C.; Oliveira, G.A.L.; Costa, J.P.; Sousa, D.P.; Freitas, R.M.; Almeida, R.N., (2013). antinociceptive and antioxidant activities of phytol in vivo and in vitro models. Neurosci. J., 2013 (9 pages).
- Sabadell, J.E.; Axtmann, R.C., (1975). Heavy metal contamination from geothermal sources. Environ.

Health Perspect. 12: 1–7 (7 pages).

- Samimi, M., (2024). Efficient biosorption of cadmium by Eucalyptus globulus fruit biomass using process parameters optimization. Global J. Environ. Sci. Manage., 10(1): 1-11 (11 pages).
- Samimi, M.; Shahriari-Moghadam, M., (2021). Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochem. Eng. J., 173: 108091 (9 pages).
- Samimi, M.; Zakeri, M.; Alobaid, F.; Aghel, B., (2023). A Brief Review of Recent Results in Arsenic Adsorption Process from Aquatic Environments by Metal-Organic Frameworks: Classification Based on Kinetics, Isotherms and Thermodynamics Behaviors. Nanomater., 13(1): 60 (12 pages).
- Samimi, M.; Mansouri, E., (2023). Efficiency evaluation of Falcaria vulgaris biomass in Co(II) uptake from aquatic environments: characteristics, kinetics and optimization of operational variables. Int. J. Phytoremediation, 1-11 (11 pages).
- Samimi, M.; Nouri, J., (2023). Optimized Zinc Uptake from the Aquatic Environment Using Biomass Derived from Lantana Camara L. Stem, Pollution, 9(4).
- Sulistyowati, L.; Nurhasanah; Riani, E.; Cordova, M.R., (2022). Heavy metals concentration in the sediment of the aquatic environment caused by the leachate discharge from a landfill. Global J. Environ. Sci. Manage., 9(2): 323-336 (14 pages).
- Shamshul, S., Mangaonkar, K. V., 2010. Heavy metal analysis from Tridax procumbens plant powder and effect of regional variation on its copper content using ICP-AES technique Shaikh. Anal. Chem. An indian J., 9: 256–259 (4 pages).
- Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Fatimawali, F.; Kepel, B.J.; Idroes, R.; Effendi, Y., (2020). Potential of plant bioactive compounds as SARS-CoV-2 main protease (mpro) and spike (s) glycoprotein inhibitors: A molecular docking study. Scientifica (Cairo). 2020: 2020040102 (**18 pages**).
- Varol, M., Sünbül, M.R., 2020. Macroelements and toxic trace elements in muscle and liver of fish species from the largest three reservoirs in Turkey and human risk assessment based on the worst-case scenarios. Environ. Res., 184: 109298 (8 pages).
- Winarsih, A.; Idroes, R.; Zulfiani, U.; Yusuf, M.; Mahmudi, M.; Saiful, S.; Rahman, S.A., (2023). Method validation for pesticide residues on rice grain in Aceh Besar District Indonesia using gas chromatography-electron capture detector (GC-ECD). Leuser J. Environ. Stud., 1: 18–24 (7 pages).

AUTHOR (S) BIOSKETCHES Maulydia, N.B., M.Si., Ph.D. Candidate, Graduate School of Mathematics and Applied Sciences, Universi 23111, Indonesia. Email: maulydiabalqis@gmail.com ORCID: 0009-0000-6497-5825 Web of Science ResearcherID: NA Scopus Author ID: 57424387500 Homepage: https://usk.ac.id/	tas Syiah Kuala, Banda Aceh,
Idroes, R., Ph.D., Professor, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Ur Aceh 23111, Indonesia. • Email: rinaldi.idroes@usk.ac.id • ORCID: 0000-0003-2264-6358 • Web of Science ResearcherID: S-8983-2016 • Scopus Author ID: 57192873366 • Homepage: https://fsd.usk.ac.id/rinaldi.idroes/	iiversitas Syiah Kuala, Banda
 Khairan, K., Ph.D., Associate Professor, Department of Pharmacy, Faculty of Mathematics and Natura Kuala, Banda Aceh 23111, Indonesia. Email: <i>khairankhairan@usk.ac.id</i> ORCID: 0000-0003-3028-6022 Web of Science ResearcherID: GPS-9955-2022 Scopus Author ID: 37016941000 Homepage: https://fsd.usk.ac.id/kkh/ 	l Sciences, Universitas Syiah
Tallei, T.E., Ph.D., Professor, Department of Biology, Faculty of Mathematics and Natural Sciences, Universindonesia. Email: tring_tallei@unsrat.ac.id ORCID: 0000-0002-7963-7527 Web of Science ResearcherID: U-1322-2019 Scopus Author ID: 57193317686 Homepage: http://fmipa-unsrat.com/biologi.php	itas Sam Ratulangi, Manado,
Mohd Fauzi, F., Ph.D., Associate Professor, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Pa Bandar Puncak Alam, Selangor, Malaysia. • Email: fazlin5465@uitm.edu.my • ORCID: 0000-0002-1572-9449 • Web of Science ResearcherID: J-5819-2015 • Scopus Author ID: 57219347587 • Homepage: https://pharmacy.uitm.edu.my/index.php/discover-us/directory/27-corporate/staff-directory	

HOW TO CITE THIS ARTICLE

Maulydia, N.B.; Idroes, R.; Khairan, K.; Tallei, T.E.; Mohd Fauzi, F., (2024). Ecotoxicological insight of phytochemicals, toxicological informatics and heavy metal concentration in tridax procumbens L. in geothermal áreas. Global J. Environ. Sci. Manage., 10(1): 369-384.

DOI: 10.22034/gjesm.2024.01.23

URL: https://www.gjesm.net/article_707943.html