Document Type : ORIGINAL RESEARCH ARTICLE

Authors

1 Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia

2 The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan

3 Occupational Health and Safety Department, Faculty of Public Health Universitas Indonesia, Depok 16424, Indonesia

4 Occupational Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Gedung E, Kampus UI Depok, Depok 16424, Indonesia

Abstract

BACKGROUND AND OBJECTIVES: Zeolite has been recognized as a potential adsorbent for heavy metals in water. The form of zeolite that is generally available in powder has challenged the use of zeolite in the environment. Embedding powder zeolite in a nonwoven sheet, known as a zeolite-embedded sheet can be an alternative to solve that. Another challenge is that information and models of zeolite-embedded sheet removal efficiency are still limited. The novelty of this study is, first, the development of a zeolite-embedded sheet to remove heavy metals from water, and second, the use of the random forest method to model the heavy metal removal efficiency of a zeolite-embedded sheet in water.
METHODS: The heavy metals studied were copper, lead and zinc, considering that those are common heavy metals found in water. For developing the zeolite-embedded sheet, the methods include fabrication of the zeolite-embedded sheet using a heating procedure and heavy metals adsorption treatment using the zeolite-embedded sheet. The machine learning analysis to model the heavy metal removal efficiency using zeolite-embedded sheet was performed using the random forest method. The random forest models were then validated using the root mean square error, mean square of residuals, percentage variable explained and graphs depicting out-of-bag error of a random forest.
FINDINGS: The results show the heavy metal removal efficiency was 5.51-95.6 percent, 42.71-98.92 percent and 13.39-95.97 percent for copper, lead and zinc, respectively. Heavy metals were reduced to 50 percent at metal concentrations of 10.355 milligram per liter for copper, 171.615 milligram per liter for lead and 4.755 milligram per liter for zinc. Based on the random forest models, the important variables affecting copper removal efficiency using zeolite-embedded sheet were its contents in water, followed by water temperature and potential of hydrogen. Conversely, lead and zinc removal efficiency was influenced mostly by potential of hydrogen. The random forest model also confirms that the high efficiency of heavy metals removal (>60 percent) will be achieved at water potential of hydrogen ranges of 4.94–5.61 and temperatures equal to 29.1 degrees Celsius.
CONCLUSION: In general, a zeolite-embedded sheet can adsorb diluted heavy metals from water because there are percentages of adsorbed heavy metals. The random forest model is very useful to provide information and determine the threshold of heavy metal contents, water potential of hydrogen and temperature to optimize the heavy metal removal efficiency using a zeolite-embedded sheet and reducing pollutants in the environment.

Graphical Abstract

Machine learning using random forest to model heavy metals removal efficiency using a zeolite-embedded sheet in water

Highlights

  • The important variables affecting the heavy metals removal efficiency of ZES were metal contents in water, followed by water temperature and pH;
  • A random forest model can determine the threshold of heavy metal contents, water pH and temperature to optimize the heavy metal removal efficiency of ZES;
  • Based on the model, high removal of Cu from water using ZES is observed if the Cu content is ≤5.685 mg/L;
  • At pH ranges 4.94–61 and with temperature equal to ≤29.1 °C, ZES removes Pb and Zn from water.

Keywords

Main Subjects

OPEN ACCESS

©2024 The author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit: 

http://creativecommons.org/licenses/by/4.0/

PUBLISHER NOTE

GJESM Publisher remains neutral concerning jurisdictional claims in published maps and institutional affiliations.

CITATION METRICS & CAPTURES

Google Scholar Scopus Web of Science PlumX Metrics Altmetrics Mendeley |

CURRENT PUBLISHER

GJESM Publisher

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image