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Modern studies in the field of environment science and engineering show 
that deterministic models struggle to capture the relationship between the 
concentration of atmospheric pollutants and their emission sources. The recent 
advances in statistical modeling based on machine learning approaches have 
emerged as solution to tackle these issues. It is a fact that, input variable type 
largely affect the performance of an algorithm, however, it is yet to be known 
why an algorithm is preferred over the other for a certain task. The work aims at 
highlighting the underlying principles of machine learning techniques and about 
their role in enhancing the prediction performance. The study adopts, 38 most 
relevant studies in the field of environmental science and engineering which have 
applied machine learning techniques during last 6 years. The review conducted 
explores several aspects of the studies such as: 1) the role of input predictors 
to improve the prediction accuracy; 2) geographically where these studies were 
conducted; 3) the major techniques applied for pollutant concentration estimation 
or forecasting; and 4) whether these techniques were based on Linear Regression, 
Neural Network, Support Vector Machine or Ensemble learning algorithms. The 
results obtained suggest that, machine learning techniques are mainly conducted 
in continent Europe and America. Furthermore a factorial analysis named multi-
component analysis performed show that pollution estimation is generally 
performed by using ensemble learning and linear regression based approaches, 
whereas, forecasting tasks tend to implement neural networks and support vector 
machines based algorithms.
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INTRODUCTION

Due to serious health concerns, atmospheric 
pollution has become a major basis of premature 
mortality among general public by causing millions of 
deaths each year (WHO, 2014). Almost no urban area 
completely follows air quality guidelines set by World 
Health Organization WHO (Limb, 2016; WHO, 2016).  
Apart from those who suffer from asthma, 
cardiovascular problems and respiratory issues, 
children and elderly people are at high risk of being 
prone to negative effects of atmospheric pollution 
(Masih, 2018a). In order to abate the effects of 
elevated pollutants, there is a need to spread 
awareness among citizens to limit their outdoor 
activities in case of poor air conditions (Salnikov and 
Karatayev, 2011). At the same time, development of 
statistical models that can efficiently estimate and 
predict the pollutant concentration is also crucial. 
Atmospheric pollution modeling deals with pollutant 
concentrations, their characteristics and connection 
with regional meteorological conditions for further 
research inquiries and scientific applications (Daly 
and Zannetti, 2007). With air pollution modeling one 
can estimate the level of air pollution and assess its 
impact on environment and human health 
(Brunekreef and Holgate, 2002). Moreover 
considering the relationship of emission sources with 
air pollutants as well as with regional and 
meteorological parameters, the role of such models 
is indispensable (Cohen et al., 2017; Pannullo et al., 
2017; Lelieveld et al., 2015; Kinney, 2008). Besides 
determining actual emission sources, future 
mitigation solutions is the other major contribution 
of air pollution modeling.  Atmospheric pollution 
modeling techniques are mainly divided into three 
types: 1) atmospheric chemistry; 2) dispersion; and 3) 
machine learning. However, there are some other 
pollution models widely adopted in the field of 
atmospheric sciences such as Gaussian models, 
Lagrangian models, Eulerian models etc. Complex 
Gaussian dispersion models such as AERMOD and 
PLUME are mainly adopted by environmental 
protection organizations and industries to investigate 
the emission sources based on emission data and 
regional meteorological conditions (Lutman et al., 
2014). Lagrangian models e.g. Numerical Atmospheric 
dispersion Modeling Environment (NAME), on the 
other hand study the position, characteristics and 
movement of air parcel based on wind data over time 

(Lutman et al., 2014). Whereas Eulerian model 
named ‘Unified’ is applied to study atmospheric 
properties such as concentration of gases, 
temperature and atmospheric pressure over time 
(Met, 2004). Emission process, its chemical mixing 
transportation of atmospheric gases with 
meteorology is dealt by Chemical Transport models 
(CTM) (Prank et al., 2005; Seigneur and Moran, 2010).  
These atmospheric science models are based on 
multi-processing approaches involving real time 
updated emission records and meteorological data 
(Feng et al., 2015). The implementation of these 
models is further hindered by the lack of primary 
emission data and meteorological parameters in 
some areas for initial boundary conditions (Jiménez 
and Dudhia, 2013).  To resolve the issue Computer 
Fluid Dynamics methods are proposed (Baklanov, 
2000).  Studies revealed that traditional deterministic 
models suffer from a problem of capturing the non-
linearity between air pollutants and the sources of 
their emission and dispersion (Chen et al., 2017; Liu 
et al., 2017; Shimadera et al., 2016) especially in 
regions with complex terrain (Ritter et al., 2013). In 
order to tackle the limitations of traditional models, 
machine learning approaches based on statistical 
algorithms seem promising. Instead of considering 
physical and chemical processes, statistical models 
strictly rely on historical data to make pollution 
predictions. Regression; Time Series; and 
Autoregressive Integrated Moving Average (ARIMA) 
are the most common statistical approaches applied 
in the field of environment science and engineering 
(Lee et al., 2017; Nhung et al., 2017; Zafra et al., 
2017). They work on a principle of describing an 
association between input and output variables 
based on statistical averages. The training of these 
models is based on emission inventory inputs and 
other predictive features such as regional 
meteorological conditions, land use, boundary layer, 
anthropogenic activity, etc. to calculate the 
concentration level of atmospheric pollutants for 
future predictions (Russo and Soares, 2014; Singh et 
al., 2012). Although regression based models can 
provide reasonable results, however, the non- linear 
behavior of air pollutants and other influential reginal 
features leads to a very complex system of air 
pollutant formation (Brunelli et al., 2007; Morabito 
and Versaci, 2003; Chaloulakou et al., 2003). For that, 
advanced statistical approaches based on machine 
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learning algorithms e.g. neural network (NN) (Capilla, 
2014), support vector machine (SVM) (Suárez Sánchez 
et al., 2011), and Ensemble Learning algorithms 
(Cannon and Lord, 2000) are well known due to their 
ability to efficiently overcome the issue of capturing 
non-linearity trend in air pollution modeling. In 
general, statistical learning algorithms show a 
superior predictive performance as compared to 
CTMs, without knowing the details about chemical 
processes occurring in the atmosphere (Adam-
Poupart et al., 2014; Hoek et al., 2008; Marshall et al., 
2008). Due to wide applications in air quality 
modeling, NNs are considered one of the most 
common, reliable, widely adopted and cost effective 
machine learning tools to predict air pollutant 
concentrations (Russo and Soares, 2014; Shaban et 
al., 2016; Capilla, 2014; Singh et al., 2012; Rahimi, 
2017). In these studies NN based algorithms are 
preferred over classic statistical techniques for their 
ability to yield improved performances and handle 
non-linearity and complexity of the emission 
inventory records. However, their practical application 
show that NN based prediction models suffer from 
several drawbacks such as local minima, overfitting, 
poor generalization, and the need to determine the 
appropriate network architecture. Couple of attempts 
were made by Lu et al. (2003) and Wang and Lu, 
(2006) to overcome these issues, but, unfortunately, 
both couldn’t succeed in solving these problems 
simultaneously. Finally, the performance of SVM 
algorithm was assessed against Multilayer perceptron 
(MLP) by Lu and Wang, (2014) which illustrate that on 
structural issues SVM performs better than MLP. The 
study is considered a landmark in the field of 
atmospheric pollution prediction for solving 
overfitting and instability problems. Interestingly, 
until 2000, no study in field of atmospheric modeling 
considered meta-learning technique Bagging for 
prediction purpose, when for the first time Cannon 
and Lord, (2000) attempted a model using bagging to 
predict the maximum concentration of ground level 
O3 during daytime. The work is divided into two 
phases. During first, MLP and Multiple Linear 
Regression (MLR) were tested as an independent 
classifiers, whereas in second phase both were 
adopted within bagging as base classifiers. The result 
obtained suggest that, as independent classifiers 
both MLP and MLR suffered from overfitting and 
instability problems, however, later adopting them 

within Bagging as base classifiers enhanced their 
stability and accuracy performance. Later, a study 
based on Athens Greece (Riga et al., 2009) developed 
multiple models and established that Tree and Rule 
classification algorithms perform significantly better 
than SVM and linear regression. Similarly, the 
application of Tree classifiers – Random Forest (RF) 
for atmospheric prediction were recently explored in 
a study conducted by Jiang and Riley (2015). For this 
study classification model based on RF was developed, 
whereas for validation, the result were compared 
against Classification and Regression Tree (CART). 
This Sydney based work concluded that the accuracy 
obtained by using RF is superior to CART. Knowing 
that several machine learning approaches have 
recently been employed to predict variety of air 
pollutants by using predictive parameters in different 
combination, however, it still remains confusing why 
one algorithm performs better than the other under 
certain conditions. Keeping in view these 
observations, the work aims at a systematic review of 
machine learning techniques applied in the field of 
air pollution research in recent years. The work 
involves the perusing of a number of recent studies 
regarding machine learning techniques to model air 
pollutants. It discusses the strategies adopted for 
analysis, results obtained as well as the future 
challenges faced by machine learning techniques in 
air pollution modeling. This study has been carried 
out in Ekaterinburg, Russian Federation in 2019.

RESEARCH MAIN BODY

The search was conducted in a widely known 
research highly indexed database SCOPUS and 
Web of Science journals publications. The reason 
for considering only the two citation databases 
were that, they are among few databases which 
compile the most significant engineering databases 
such as IEEE Xplore and ACM. As a first step under 
this literature review a document search on 
SCOPUS website was made using the following key: 
(‘machine  learning’)  AND  (‘air  pollution  modeling’). 
The main focus of the work is on recent studies as 
these databases consider the most credible, concise, 
and achieved work.  The enquiry covers a time period 
of 6 years i.e. 2013 – 2018. As a result of this enquiry 
100 articles were identified. A further filtration 
was performed by reading the title and abstract of 
all articles. Based on this filtration 56 papers were 
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excluded from the selection list of 100 because; 1) 
they didn’t address the topic; 2) the work was based 
on physical sensors instead of computational models; 
3) many studies from biology, social and health 
sciences used predictive models to calculate the 
health impact of air pollutant and did not estimate 
or forecast their concentrations. Following the above 
discussed criteria, the documents were reduced to 44. 
Before finalizing the list, all research works were read 
carefully during final step. Out of these 44, another 6 
were vetoed after a full document review due to the 
similarity of work with studies carried out in past by 
the same authors. Finally, a total of 38 journal articles 
were considered for review. A complete summery of 
article selection method is presented in Fig.1.  

For this review, the work considers the following 
aspects of the selected studies; 1) motivation 
of the work; 2) type of modeling i.e. forecast or 
estimation; 3) historical data of predictive features; 
4) type of the machine learning algorithms employed 
e.g. Regression, ANNs, SVM, ensemble learning 
techniques, or hybrid models; 5) nature of prediction 
i.e. if a specific pollutant (PM10, PM2.5, NOx, O3, SO2etc.) 

is predicted or air quality index (AQI) in general is 
calculated to learn pollution level; 6) geographic 
location where the study is performed; 7) time span 
and the number of data stations used; 8) evaluation 
methods to assess the model performance. The 
assessment is based on a comparison between model 
accuracy and the prediction of the actual value. The 
most popular evaluation criteria are the correlation 
coefficient (R2), Mean Absolute Error (MAE), Root 
Mean Square Error (RMSE) and Relative Absolute 
Error (RAE). The R2 value shows the fitting degree of 
regression, MAE represents the difference between 
predicted and actual values, RMSE focuses on the 
impact of extreme values based on MAE, while RAE 
calculates the variance of a model when comparing 
the performance of different models. As MAE and 
RMSE depend on the scale of the data that’s why RAE 
can be extremely helpful when comparing different 
data with different scales. The R2, MAE, RMSE and 
RAE are calculated by using Eqs. 1 to 4, respectively. 

( )( )

( ) ( )
2

1/22 2

i ii

i ii i

x x y y
R

x x y y

 − − =
 − −  

∑
∑ ∑

            	            (1)

Fig. 1: Flowchart of systematic selection of articles for qualitative and quantitative analysis   
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Where, yi and xi are predicted and observed 
values respectively,  x is the average predicted value 
and n is total number of instances. In this study, the 
results obtained after reviewing the journal articles 
are described in two ways; 1) general statistical 
description and 2) detailed description. The first part 
discusses about the total number of studies based on 
machine learning tools have been conducted in the 
field of air quality modeling to estimate or predict the 
concentration of air pollutants over the period of 6 
years.  Furthermore, it enquires about the geographic 
distribution of these studies. Whereas the other part 
provides a detailed description about the statistical 
models, their evolution and modeling performance 
to predict the principal pollutants over the period of 
6 years. Considering the number of parameters for 
selected articles, as a final point the study performs a 
factorial analysis called multiple component analysis. 
It uses nominal categorical data to draw a relationship 
among qualitative parameters that characterize each 
study and represent it in terms of low dimensional 
Euclidean space.  

General description
Due to serious health concerns of pollutants 

present in troposphere, globally air quality 
monitoring and prediction modeling have become 
a key focus for a number of researchers. As a result, 
recently the number of studies using machine 
learning approaches in air pollution modeling have 
significantly increased. However their distribution 
around the world doesn’t look uniform. Fig. 2 depicts 
that the number of research articles based in Europe 
and America are higher than that of Asia. Only Europe 
counts for nearly 40% of total work, followed by 
33% and 24% in America and Asia respectively. As a 
country United States of America (USA) takes the lead 
by publishing the 27% (i.e. 10 articles) of the total 
studies considered during 6 years period followed by 
China (24%), United Kingdom (10%) and Spain (10%).

While, Fig. 3 represents the number of works 
which applied machine learning algorithms in air 
pollution modeling during 2013 to 2018. Besides 
showing a consistent increasing trend in the number 
of studies published during last three years (2016-
18), its stability during 2017 and 2018 is of greater 
importance. 

A complete document review of 38 studies 
suggested that the most common and widely adopted 
algorithms for air pollutant estimation and prediction 
since 2013 are: Linear Regression; NNs; SVMs; and 
Ensemble Learning Algorithms as shown in Fig. 3. 
Only one study used a peculiar approach related to 
Lazy methods. Among these 5, Ensemble learning 
is the most advanced machine learning approach 

 
Fig. 2: Geographic distribution of pollution studies 
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applied in the field of air pollution prediction followed 
by SVM and NNs. Ensemble learning approach is a set 
of algorithms in which multiple predictors are trained 
to address the same problem by combining the results 
produced by all predictors (Beckerman et al., 2013). 
While its final output is based either on the average of 
all predictions or on majority voting. Ensemble learning 
techniques combine weak and strong predictors 
which are less sensitive to overfitting and better at 
generalization (Mckeen et al., 2004). These techniques 
work on a principle of introducing stochasticity either 
into the dataset to produce different sample sets and 
predictors or through prediction algorithms to solve 
the issue. These techniques overall perform better than 
that of single base learners such as ANNs and SVMs 
(Masih, 2019; Masih, 2018b; Nawahda, 2016; Van 
Loon et al., 2007). Bagging is the simplest ensemble 
learning technique in which stochasticity is introduced 
into the original dataset to create several datasets 
by taking random samples with replacement. Each 
specific dataset is used to generate predictive learner. 
Later for model output, all predictors are combined 
(Windeatt et al., 2008). In Boosting – another ensemble 
learning technique, the randomness is introduced into 
weak classifiers through sequential training to produce 
predictors, which later are weighted in such a way that 
all incorrectly predicted observations are given more 
weightage that usually results in a better accuracy 
(Singh et al., 2013). Due to its ability to critically 
observe the incorrectly classified instances, boosting is 
considered one of the best prediction algorithm. While 
the ensemble methods that use multiple algorithms 

for prediction are called Voting and Stacking (Masih, 
2019). Keeping in mind that each model is given a fair 
weightage according to its performance, ensemble 
methods are generally evaluated by cross validation. 
The review conducted suggest that RF is one of the 
most popularly known ensemble learning technique 
due to its wide applications in various fields such as 
Bioinformatics, Marketing, environmental science 
etc. (Alfaro et al., 2008; Gabralla and Abraham, 
2014; Fathima et al., 2014; Yang et al., 2010; Tüfekci, 
2014).RF is a flexible and supervised algorithm that 
can generate great results without hyper parameter 
tuning. The term “forest” has been coined to RF 
because numerous trees are built, compiled and 
trained by using bagging method which helps in 
improving the accuracy of the predictor. In RF each 
tree is built from a sample drawn with replacement 
from training set results in a slightly increased bias 
and decreased variance of the forest, however, it 
enhances the overall performance of the model. RF 
is considered one of the most efficient, powerful, 
and accurate learning approach due to its ability of 
extracting important variables, handling internal 
unbiased of the generalization error and most 
importantly the competency of maintaining accuracy 
even if a large portion of data is missing. NN are the 
other major approaches applied in environmental 
sciences recently (Abdul-Wahab and Al-Alawi, 2002; 
Zhang et al., 2012; Rahimi, 2017). These approaches 
take inspiration from human nervous system. NN 
works on a principle of classifying input observations 
by using linear combination of the datasets using Eq. 5. 

 
Fig. 3: Number of studies based on different machine learning algorithms from 2013 to 2018 

   

0

2

4

6

8

10

12

14

2013 2014 2015 2016 2017 2018

N
um

be
r o

f p
ub

lic
at
io
ns

Ensemble learning Regression NN SVM Lazy

Fig. 3: Number of studies based on different machine learning algorithms from 2013 to 2018



521

Global J. Environ. Sci. Manage., 5(4): 515-534, Autumn 2019

0

 
i

i i
i

X W O
=

=∑                                                                          (5)
	
Where, O is an observation characterized by several 

features (from 0 to i) and W is the weight applied 
to each feature.  It starts with all weights set to 0, 
later with the help of a loop it keeps on modifying 
the incorrectly classified instances to a point until 
all instances are classified correctly (Gardner and 
Dorling, 1998). It consists of a minimum of three 
layers i.e. Input, hidden and output layer. The input 
layer is a layer of predictive features such as pollutant 
concentrations, meteorological parameters, regional 
land features etc. The output layer represents the 
predictor variables such as pollutant predictors (PM10, 
NO2) and AQI, while hidden layer comprises nodes 
which enable multiple connections between input and 
output layers (Gardner and Dorling, 1999). Example of 
ANN having small number of hidden neurons is called 
MLP, whereas Deep Learning Neural Network contains 
large number of hidden layers. These nodes act as 
a weighted sum between input and output layers. 
The next popular advanced machine learning tool 
is SVM (Zhu et al., 2012). It is sometimes considered 
as the popular alternative to NN. It’s a discriminative 
algorithm used for classification purpose by finding 
the hyperplane that maximizes the boundary between 
two classes. It requires the selection of critical points 
also called support vectors to obtain the boundary 
line, that describe the channel and perpendicular 
bisectors of the line which in case of 2-dimensional 
dataset are joined by two support vectors and in case 
of multidimensional dataset by a hyperplane (Vong et 
al., 2012).  To attain a maximum margin, hyperplane 
does not depend on observations but largely rely upon 
the value of the support vectors as described in Eq. 6. 
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Where, a(i) are the support vectors and i is the 
number of these vectors. 

Whereas to deal with classes that are linearly 
inseparable, a function is applied to transform the 
original dataset, whereas to reduce the computational 
cost of the transformation, a kernel trick is adopted.  
Hence, for a fair performance of SVM, the selection 
of right kernel and correct tuning of its parameters is 
vital. The most common kernel types are linear kernel, 
polynomial kernel, and radial basis function kernel in 

Eqs. 7, 8, and 9, respectively.
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Last but not the least, it was quite interesting to 
know that a fair number of articles (5) have applied 
classic statistical regression model for pollution 
prediction. Features extracted from dataset were 
treated as input variables, whereas, for prediction, 
the relationship between input and output is learned 
through weights which fit a linear or nonlinear curve 
to data points. To correctly fit a curve, in regression 
modeling, an optimization technique named goodness 
of the fit matric is used in order to find a curve that 
better fits as compared to others. For example gradient 
descent algorithm is a popular optimization technique 
adopted both in regression as well as in machine 
learning models to minimize the cost function using 
Eq. 10. 
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Where, n is the number of observations, y is the 
actual output and hθ (x) is the predicted output.

Detailed description
In this section a comprehensive discussion has 

been conducted over the selected studies. Based 
on the motivation and objective of the work, the 
section explores five key group of studies in details; 
1) Role of input parameters in a successful air 
pollutant estimation and forecasting; 2) hybrid and 
deep learning approaches; 3) contribution of satellite 
image and sensor based monitoring techniques 
to enhance pollution prediction accuracy; (4) 
relationship between air pollution and land use; (5) 
application based approaches. 

Group 1: Role of input parameters for successful air 
pollutant estimation and forecasting

This section focuses on the role of input variables 
adopted by modeling approaches to successfully 
predict the atmospheric concentration of pollutants. 
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Results suggest that a total of 14 articles out of 38 
accounted for estimation and forecasting purposes. 
RF – a tree based ensemble learning approach was 
found to be the most common machine learning 
technique recently employed for prediction of air 
pollutants, followed by regression approaches, ANNs, 
SVM and lazy learning. Further in depth details 
revealed that various tests namely Pearson 
Correlation, Principle Component Analysis (PCA) have 
also been considered by the studies to learn how 
dimensionality reduction can influence predictors’ 
performance. Starting with the most recent work 
conducted by Zhan et al. (2018) is based in China. The 
study makes use of RF algorithm to construct a 
spatiotemporal model that can efficiently predict the 
concentration of ground level O3 all across the 
country. The list of input features adopted include: 
planetary boundary height, vegetation index, 
meteorology, anthropogenic emission inventory, land 
use, population density, time, road density and 
elevation. The dataset was gathered from 1601 
stations over a period of one year. The model develops 
500 regression trees for prediction. Whereas for 
evaluation purpose, two widely accepted evaluation 
parameters namely R2 and RMSE were considered. 
For a proficient assessment model performance was 
compared against CMTs. Result obtained recommend 
that the performance of proposed model (R2=0.69) is 
better than that of obtainable by CTMs. It also reports 
that, model performance mainly relies upon 
meteorological parameters namely humidity, solar 
radiation and temperature, while its connection with 
anthropogenic emissions such as CO, Organic Carbon, 
and NOx etc. was not strong enough, and sparsity of 
monitoring stations results in a lower accuracy.  
Another recent work by Grange et al. (2018) used RF 
as a classification technique to build a model by using 
meteorological conditions, atmospheric pollutant 
data and temporal factors to analyze the trend of 
PM10 as well to make a long term prediction. The 
methodology of the study involves the creation and 
training of many out of the bag (OOB) samples to 
grow Decision Tree, which later were combined to 
make a prediction. The study makes use of daily input 
variables named: wind speed, wind direction, 
temperature, time, boundary layer height and 
synoptic scale, were obtained from 31 monitoring 
stations of Switzerland for a period of 20 years. The 
average accuracy calculated in terms of correlation 

coefficient (R2) at all 31 stations was found to be 0.62, 
with wind speed and boundary layer being the best 
input predictors and synoptic scale the worst. The 
prediction performance obtained under the model at 
different location varied from R2 = 0.53 to R2 = 0.71. 
The lower values were mostly recorded at stations 
located near rural mountainous areas. In order to 
learn about the conditions which lead to high 
pollution in Athens, Greece, Bougoudis et al. (2016) 
built a hybrid system by using ANN, RF, fuzzy logic 
along with unsupervised clustering for the prediction 
of various pollutants. The experiment conducted 
makes use of 12 years’ hourly dataset of air pollutants 
(CO, NO, NO2, SO2) and meteorological parameters 
(temperature, relative humidity, pressure, solar 
radiation, wind speed, wind direction). Unsupervised 
clustering was aimed at re-sampling the initial data 
vectors, while the modeling performance of each 
experiment was evaluated in terms of R2 value, 
Mamdani rule based on fuzzy inference system (FIS) 
was applied to enquire about factors affecting the 
quality of air.  The model performed well to estimate 
the concentration of CO and NO with R2 =0.95 when 
FIS ensemble with RF and ANN respectively, while 
using RF alone it could predict NO and O3 with 
accuracy equal to 0.91. To learn more about the 
robustness of machine learning tools Martínez-
España et al. (2018) conducted a work in Murcia, 
Spain. The study aimed at the prediction accuracy of 
ground level O3 by using 5 different classification 
models namely Bagging, RF, Decision Tree, k-Nearest 
Neighbor, and Random Committee. The work applied 
two years’ air pollution dataset of NO, NOx, PM10, O3, 
SO2, C6H6, C7H8, XIL, and environmental parameters 
such as pressure, solar radiations, temperature, 
relative humidity, wind speed and direction. The 
experimental design has been divided into two 
phases.  During first, the prediction accuracy of all the 
models were tested out and compared against each 
other, whereas to study the number of models 
required for O3 modeling in Murcia region, during 
second phase the work adopted a hierarchical 
clustering approach. Results obtained in terms of 
correlation coefficient are as follow: the performance 
of RF has been superior having R2 value equal to 0.85 
as compared to Random Committee (0.83), Bagging 
(0.82) and Decision Tree (0.82). Among 5 models kNN 
performed the worst (0.78), whereas NOx, 
temperature, wind direction, wind speed, relative 
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humidity, SO2, NO, and PM10 were found to be the 
best predictors. In the end, using clustering approach 
suggested that study region only requires two models 
for a thorough modeling of O3. While another study 
by Sayegh et al., (2014) aimed at capturing the 
variability of PM10 by employing several statistical and 
machine learning models such as Boosted Regression 
Tree (BRT), Generalized Additive Model, Linear and 
Quantile Regression models (QRMs).  It is worth 
noting that QRM was used to assess the contribution 
of predictors at different percentiles, unlike LR which 
only considers feature distribution as a whole.  For 
this study hourly dataset of NOx, CO, SO2, PM10, 
temperature, relative humidity, wind speed and 
direction were recorded at Makkah, Saudi Arabia for 
a period of one year.  The performance was evaluated 
in terms of coefficient of determination (observed/
predicted values). Considering the role of different 
quantiles instead of central tendency of PM10, it was 
observed that QRM has performed better as 
compared to other data mining tools to predict the 
hourly concentrations PM10. Nieto et al. (2015) 
conducted a research using 3 years dataset of NOx, 
CO, SO2, O3, and PM10 from Oviedo (Spain) to predict 
three different air pollutants NO2, SO2 and PM10.  The 
experimental setup employs MLP and Multivariate 
Adaptive Regression Splines as modeling tools. The 
proficient assessment of modeling results inferred 
that the estimation of NO2 (R

2 = 0.85) has been pretty 
good, followed by a slightly lower accuracy obtained 
for SO2 (R

2 =0.82) and PM10 (R
2 =0.75). Meanwhile, to 

predict the concentration of a greenhouse gas N2O, 
another study adopts RF algorithm (Philibert et al., 
2013). It makes use of global meteorological and crop 
data such as; type of crop, country, fertilization, etc. 
Prior to data modeling, during data preprocessing 
several measures were taken into consideration to 
improve the prediction accuracy including: the 
removal of extreme values in the dataset; exclusion 
of boreal ecosystem; ranking of important features in 
dataset; and supply of controlled number input 
variables. For a fair assessment the results were 
compared against linear and nonlinear regression 
models. The result show that accuracy performance 
of RF based model was 20-24% higher than that of 
both regression models. Whereas another RF based 
model (Yu et al., 2016) have lately been constructed 
to predict the AQI by using urban public data based 
on road information, air quality and meteorological 

datasets of all the regions of Shenyang, China. Over 
proficient assessment of the model, it was verified 
that RF with its highest precision (R2 = 0.81) and 
lowest error value (RAE = 36.9%) have outperformed 
the state of the art classifiers such as Naïve Bayes, 
Logistic Regression, single decision tree and ANN. A 
simplified regression technique based on Quito, 
Ecuador introduced by Kleine Deters et al. (2017) was 
aimed understanding the effects of meteorological 
factors on the precise prediction of PM2.5. The data 
preparation under this study include 6 years 
meteorological data for training and testing purposes, 
while for evaluation the model adopts 10-fold cross 
validation and coefficient of determination R2. The 
most interesting aspects of this model is that, it can 
be considered a fair and an economic option for the 
cities without air quality equipment, to estimate the 
PM2.5 concentration in air by just using meteorological 
parameters. Beside a fair performance during a 
regular days, it was interesting to see that improved 
results were recorded during extreme weather 
conditions. A lazy learning technique was tested out 
to draw an association between the PM10 emissions 
and AQI. Hourly dataset of SO2, NOx, CO, PM10, and 
Ammonia (NH3) was gathered from an area called 
Lombard in Italy for one year period (Carnevale et al., 
2016). Other specifications of the study include: 
application of Dijkstra algorithm for large scale data 
processing. The data were split at a ratio of 80% and 
20% for training and validation purposes respectively. 
The validation phase results were compared with 
deterministic models instead of comparing it with the 
targeted values. The results obtainable through this 
approach in the form of R2were nearly the same as 
achieved by Transport Chemical Aerosol Model 
(TCAM) i.e. R2=0.99. By the way TCAM is a costly 
computational method commonly used in decision 
making. One of most reliable predictive model based 
on SVM was employed by (Liu et al., 2018). The 
predictive features of the model were trained using 
two years emission data of 6 atmospheric pollutant 
concentrations (PM2.5, PM10, SO2, CO, NO2, O3), AQI 
value and 3 meteorological parameters (temperature, 
wind direction and velocity) from three cities of China 
namely Tianjin, Beijing, and Shijiazhuang.  4- Fold 
cross validation technique was adopted to split the 
data into training and testing sets, whereas for model 
validation the model output was compared against 
the observed data. It was observed that the model 
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performance fairly improves especially if emission 
information of the nearby cities is considered. 
Contrary to that, Singh et al., (2013) proposed an air 
quality model using tree based ensemble algorithms 
– Single decision tree, Decision tree boost, and 
Decision tree forest against SVM, for AQI prediction. 
In addition it makes use of Principal Component 
Analysis for dimensionality reduction to identify 
pollution sources. The study uses air pollutant and 
meteorological data of 5 years collected from 
Lucknow (India). The model performance shows a 
significant improvement in results as all three 
approaches namely Decision tree boost ( 2R 0.96= ), 
Decision tree forest ( 2R 0.95= ) and Single decision 
tree ( 2R 0.9= ) have outperformed SVM ( 2R 0.89= ). 
While in forecasting category only two studies were 
found, out of which one article applied ensemble 
neural network technique to forecast AQI one day 
ahead by using three years pollutants and 
meteorological dataset of 16 cities in China (Chen et 
al., 2018). The model uses Partial Mutual Information 
(PMI) to select the best predictors, to precisely 
forecast the daily AQI value by using PEK-based 
machine learning approach and previous day’s 
emission and meteorological data. PEK is an ensemble 
artificial neural network based general purpose 
function approximator. With PM2.5, PM10, and SO2 as 
the best predictors the proposed model on average 
have achieved an accuracy of 2R = 0.58.  The other 
article by Oprea et al., (2016) take a dig at forecasting 
the level of PM10 concentration in atmosphere by 
using Tree based data mining algorithms i.e. REPTree 
– Reduced Error Pruning Tree and M5P – an inductive 
learning approach based on regression tree using M5 
algorithm. To extract the best input features (PM10, 
NO2, SO2, relative humidity and temperature) from 
emission and meteorological data, the model uses 
PCA.  This Romania based study used 27 months 
records for training, and 8 previous days’ data for a 
short term prediction of PM10 concentration. The 
comparison drawn between two models suggested 
that the performance of M5P is better and can 
forecast PM10 concentration one and two days ahead 
with an accuracy value 0.81 and 0.79 respectively. 

Group 2: Extreme learning and hybrid approaches
This category registered the second spot with 

10 articles. Interestingly it is the only class in 
which forecasting approaches (8) are way more 

than estimations models (2).  The first estimation 
technique using Extreme Learning Machine (ELM) 
is proposed by Zhang and Ding, (2017). ELM was 
aimed at handling low convergence and local minima 
which NN algorithms suffer from. The proposed ELM 
was based on only 2 NN layers, first (hidden) layer 
was random and fixed, whereas second involved 
training. The study uses meteorological and time 
parameters to predict the concentration of number 
of pollutants such as NO2, NOx, O3, PM2.5, and SO2. 
The results obtained indicate that ELM based model 
is highly feasible because it doesn’t just provide a 
better prediction accuracy than MLR and NN, but 
offers a low computational cost as well. Whereas the 
other study builds a model to precisely predict NO2 
and NOx with a high spatiotemporal resolution (Li et 
al., 2017). The work was mainly divided into three 
stages. To characterize the spatiotemporal variability 
of NOx and NO2, first stage incorporates nonlinear, 
fixed and spatial input variable. In second stage 
ensemble learning technique was employed with an 
aim to reduce variance and uncertainty in prediction. 
While third was an optimization stage which handles 
incomplete time dependent variables such as traffic, 
meteorology etc. to get a continuous time series 
dataset. The prediction accuracy of the model in 
polluted areas was quite good (R2=0.85) however, 
its performance was poor in areas with low level 
pollution. Peng et al., (2017) are the latest to introduce 
an advanced machine learning based approach for 
an air quality forecasting up to 48 h. The model was 
based on ELM and is updateable in real time by using 
linear solution applied to new data. Under this study 
performance of 5 different algorithms (MLR, Multi-
Layer Neural Network (MLNN), ELM, updated-MLR, 
and updated-ELM) was assessed and compared. 
The model predicts three air pollutants namely 
O3, PM2.5, and NO2 in two stages. First controls the 
initial training of the algorithm, whereas the other 
is a sequential learning stage which considers daily 
online update of MLR and ELM. The results obtained 
suggest that updated-ELM have the characteristics of 
predicting O3, PM2.5, and NO2 with high accuracy and 
low error values as compared to other four models. In 
order to improve atmospheric pollution forecasting, 
few studies have applied Deep Learning approach. 
Recently, Zhao et al., (2018) built a Deep Recurrent 
Neural Network (DRNN) model for daily air quality 
forecasting. The method consists of two steps. In first, 
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data pre-processing of six pollutants was performed 
to categorize them into four groups i.e. Individual 
AQI. While in second step Long Short Term Memory 
(LSTM) algorithm was employed for forecasting. 
LSTM is a Recurrent Neural Network (RNN) based 
algorithm. It has a memory that allows the algorithm 
to learn the input sequence with longer time steps. 
The predictive performance of the model was not 
up to authors’ expectations, as it couldn’t perform 
significantly better than other tested algorithms 
such as SVM and ensemble learning techniques. The 
other limitation was its high computational cost and 
low interpretability. Another hybrid approach using 
big data, LSTM and NN to forecast the atmospheric 
concentrations of PM2.5 (1 h ahead) was proposed 
by Huang and Kuo, (2018). The study makes use of 
Convolutional Neural Network because it reduces 
training time. The model performance was superior 
to state of the art machine learning techniques such 
as RF, SVM and MLP. However, the model is yet to be 
validated over a longer time forecast. A hybrid model 
discussed the short and long term forecasting of O3, 
NO2, and PM10 concentrations in air was presented 
by Tamas et al., (2016). The model was based on NN 
and clustering, whereas for validation, the results 
were compared against MLP. Which show that, to 
predict PM10 and O3 in particular, the performance of 
the model was significantly better than MLP. While Ni 
et al., (2017) offered a different combination of NN 
and ARIMA in the form of a hybrid model to predict 
the concentration of PM2.5 in Beijing (China). Knowing 
that, forecasting combines with a time span (e.g. 
1 h ahead), the study considered microblog data, 
chemical variables, and meteorological parameters 
as input features. The approach was proficient for 
a few hours ahead forecast, however, error values 
increased with bigger time lag.  Another hybrid 
approach making future prediction was proposed by 
Wang et al., (2015). The model is based on ANN and 
SVM methods and can be described in two stages. 
During first stage, the authors apply traditional ANN 
or SVM to make future predictions of PM10 and SO2 
concentration by using two years historical pollutant 
and meteorological data collected from 4 monitoring 
stations of Taiyuan, China. Whereas in second, 
forecasting targets by Taylor expansion forecasting 
method were revised using previous stage’s residual 
information. The experimental results show that 
by revising error terms of traditional ANN and SVM 

methods can significantly enhance their forecasting 
accuracy. Couple of studies have implemented fuzzy 
logics to forecast air contaminants. In first, Li et al., 
(2018) composed Fuzzy logic with ELM, and heuristic 
algorithms to forecast AQI level. For this study the 
pollution data of PM10, PM2.5, SO2, NO2, CO, and O3 
was collected from six cities of China. Fuzzy logic was 
aimed at feature selection, whereas, ELM and heuristic 
algorithms were employed for a deterministic 
prediction of AQI. The Fuzzy based pollution model 
resulted in a better prediction accuracy as compared 
to NN and ARIMA based algorithms, nevertheless 
the proposed approach was slightly slower than NN 
and ARIMA. Whereas the other fuzzy approach was 
implemented by Eldakhly et al., (2018) to make 1 hour 
ahead forecast of PM10 concentrations. The study 
uses fuzzy logic, and chance weight value to handle 
fuzziness of the data, target minimize an outliner 
point, while support vector point was used during 
training process. The unique results obtained is one 
of the rare examples, as the study establishes that 
the proposed approach can outperform ensemble 
learning algorithms.

Group 3: Satellite image and sensor based monitoring 
techniques to enhance pollution prediction accuracy

Six articles made to this group. Fascinatingly, all 
were based on pollution estimation instead of future 
forecasting, possibly because, for all 6, the aim was to 
enhance the spatial resolution of pollution dispersion. 
The first paper in this regard Liu et al., (2018) 
discussed a method using an integrated approach 
of adding geostatistical model (Random Forest 
Regression Kriging- RFRK) to traditional CTM. It not 
just improved the spatial resolution of ground level 
PM2.5 derived via satellite but results in an enhanced 
model accuracy. This USA based study using 14 years 
dataset, was basically performed in two steps. During 
first step, nonlinear relationship between PM2.5 
and the geographic variables was modeled using 
RF technique, whereas kriging was further applied 
to estimate the error values. The predictive input 
features used for this study include: meteorological 
data; emission data; brightness of night time lights; 
elevation and normalized difference vegetation index 
as a part of geographic and satellite based variable, 
while PM2.5 was the only predicted feature. To 
validate the model, results of RFRK were compared 
against CTM derived traditional geophysical model. 



526

A. Masih

It suggest that, RFRK is superior to other models, its 
computational cost is relatively low and flexibility 
to incorporate supplementary variables is high, but, 
the work has a limitation of its great reliance on 
satellite images. A similar approach subjected to 
enhance the prediction accuracy of PM2.5 applied 
a correction measure based on three ensemble 
learning techniques namely Gradient Boosting, 
Extreme Gradient Boosting (XGBoost) and RF (Just 
et al., 2018). In spite of using Aerosol Optical Depth 
(AOD) alone, under the proposed correction, for this 
study additional predictive features such as land use 
and meteorology were considered. The proposed 
approach used 14 years PM2.5 concentration records 
collected in Northeastern USA. The proficiency of the 
model was assessed by comparing the correlation 
coefficient value of the three different algorithms 
chosen for the study. Apart from the slightly better 
performance of XGBoost algorithm as compared 
to other two, results obtained demonstrate the 
significance of using land use and meteorological 
records to improve the accuracy when compared with 
raw AOD. However, the approach was considered 
limited due to the fact that it involves a total of 52 
predictive features.  Later, an exactly similar approach 
proposed by Zhan et al., (2017) was based on an 
improved version of Gradient Boosting algorithm 
to draw a relationship considering the nonlinearity 
between predicted output (PM2.5) and input 
predictors (AOD and meteorological parameters). 
Under this work, a geographically weighted gradient 
boost machine involving spatial smoothing kernels 
was developed to weight the optimized loss function. 
This China based case study used one year AOD, land 
use and meteorological dataset to achieve better 
accuracy as compared to traditional GB machine. 
While, day of the year, AOD, pressure, temperature, 
wind direction, relative humidity were found to 
be the best predictive features. While de Hoogh 
et al. (2018) proposed a method to predict PM2.5 
concentrations in Switzerland by using AOD and 
PM2.5/ PM10 ratio data. The dataset used to build the 
model is a sequence of broad spectrum of features 
such as planetary boundary layers, meteorological 
factors, sources of pollution, AOD, elevation, and land 
use. Whereas the prediction of PM2.5 concentrations 
were based on SVM algorithm. The model result 
obtained considering the local (100 m × 100 m) as 
well global (1 km × 1 km) boundaries show that, it 

can accurately predict PM2.5 concentrations by using 
data collected from sparse monitoring stations.  A 
slightly different satellite based study was tried by Xu 
et al. (2017). It was aimed at estimating ozone profile 
shapes. In this work the author developed a NN based 
algorithm namely Physics Inverse Learning Machine. 
The working principle of the model involves 5 major 
steps: 1) application of k-mean clustering to group 
different ozone profiles based on its concentration 
values; 2) generation of simulated UV spectra 
from each cluster of respective ozone profiles; 3) 
input predictive feature selection by using PCA to 
enhance classification effectiveness; 4) application of 
classification models to assign an ozone profile with 
respect to a given UV spectrum; and (5) scaling the 
ozone profile shape by considering the total ozone 
columns. The model results were tested by using 
predicted and observed values. Results obtained 
indicate that, altogether a total of 11 clusters were 
prepared with an estimation error lower than 10%. 
Lastly, a very different technique based on less 
reliable dense mobile sensors data collected from 
sparse monitoring stations was aimed at getting 
a fine granularity (Hu et al., 2017). For this Sydney, 
Australia based study, seven regression models 
were developed to predict the concentration of CO. 
Prior to modeling and validation the study involves 
3 main steps. During first, regression models were 
developed by using 10 years data including 7 years 
historical data from 15 static monitoring stations 
and 3 years of mobile monitoring data. A proficient 
model comparison and validation was performed 
during the second and third step respectively. Out of 
seven modeling techniques, Support Vector machine 
for regression (SVR), RF and Decision Tree regression 
achieved the best results, with SVR having the 
highest spatial resolution and precise demarcation of 
pollution boundaries as compared to other models. 

Group 4: Role of land use and spatial dependence in 
pollution prediction

There are 5 articles in this group. It considers the 
role of land use and spatial dependence to predict 
the atmospheric pollution concentrations. Abu Awad 
et al., (2017) build a general model based on land use 
to predict the PM2.5 concentrations. The two steps 
approach, first applied nu-SVR to enhance land use 
regression model and then used generalized additive 
model to refit residuals from nu-SVR. The study was 
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carried out in New England States (USA). It uses 12 
years data, collected at 368 monitoring stations. For 
model validation the results were tested in warm 
and cold seasons. On average the model achieved 
a high correlation coefficient ( 2R =0.80), however, 
specifically the model accuracy was significantly 
higher in winter than in summer season. There is 
another spatiotemporal approach based on land 
use subjected to learn the nonlinear relationship 
between air pollutants and land use (Araki et al., 
2018). This Amagasaki (Japan) based study estimated 
the atmospheric concentration level of NO2 by 
applying two algorithms namely Land Use Random 
Forest (LURF) and Land Use Regression (LUR). The list 
of input features data recorded for a period of 4 years 
include; land use, population, emission intensities, 
meteorology, satellite-derived NO2, and time. The 
results reported suggest that LURF outperformed LUR 
with a slight margin. Because LUR can only perform 
linear modeling, whereas besides finding nonlinear 
relationship, LURF have an advantage of automatic 
selection of most important features. The issue of 
feature selection related to LUR was well tackled 
through a hybrid model proposed by Beckerman 
et al., (2013). In this model LUR was mixed with 
deletion, substitution, and addition machine learning 
for pollution prediction. To evaluate the prediction 
performance of PM2.5 and NO2 the input dataset of 12 
variables were recorded for a period of 3 and 4 years 
respectively at California USA. Though the overall 
performance of the hybrid model was fair, however, 
its accuracy was significantly better to predict NO2 
as compared to PM2.5. To further extend the idea of 
Beckerman et al., (2013) a similar but deeper model 
comparing LURF and LUR was developed by Brokamp 
et al., (2017). The main objective of the work was to 
predict the chemical composition of PM2.5. For this 
Cincinnati (USA) based study the input measurements 
were taken from 24 monitoring stations during 2001–
2005. The dataset is a sequence of over 50 spatial 
parameters including land cover, physical features, 
greenspace, socioeconomic characteristics, emission 
sources and transportation. The novelty of the work 
is to develop prediction models that cannot just 
predict the level of PM2.5, but can also estimate the 
concentration of other metal components in air. Out 
of five papers classified in this group, the only model 
that deals with future forecasting was proposed by 
Yang et al. (2018). The model is based on three steps. 

First step involves clustering analysis to handle the 
spatial heterogeneity of air pollutants. During second, 
important spatial features are measured by using 
Gauss vector weight function. Whereas in third step 
spatial features are combined with meteorological 
parameters to be used as input variables of the 
proposed approach – Space-Time Support Vector 
Regression (STSVR). The model performance was 
validated by comparing its results with ARIMA, 
traditional SVR, and NN based models. The ability of 
STSVR to forecast PM2.5 concentration was partially 
better than other models. Because its performance 
was superior to other models from 1 h to 12 h ahead 
forecast, whereas to forecast 13 h to 24 h ahead, its 
performance was slightly shorter than global SVR. 
The study concluded that there is strong correlation 
between air pollutants and spatial features however, 
it changes over spatial areas. And model accuracy 
depends upon the forecasting span. 

Group 5: Application system based studies
Majority of published work (discussed above) in 

the field of pollution modeling is theoretical. However, 
group 5 focuses on studies which encourage the 
development of application systems to regulate the 
pollution level in urban areas. Out of 3, the first air 
forecast application was aimed at reducing pollution 
level through regulated traffic flow by recommending 
the drivers a best path in terms of shortest but least 
polluted route (Sadiq et al., 2016).The application is 
based on a hybrid model using Hadoop framework 
to manage multi-agent system and NN for modeling. 
The technique uses meteorology, pollutant emissions 
and traffic data as predictive features to predict the 
concentration of O3 in Marrakech-City (Morocco). 
The model accuracy was validated by comparing the 
predicted values with the observed measurements 
taken at the monitoring station. Another advance 
approach introduced by Shaban et al. (2016) involves 
the installation of low cost pollution sensors network. 
The proposed model captures raw data, first stores it 
and then processes it to make near future forecasts. 
While the results are presented on different forums 
such as mobile application and web portal. For this 
study Regression, Model Trees, SVM and NN were 
tested with an aim to determine the best algorithm 
that can precisely forecast the concentration of O3, 
NO2, and SO2 in air. Model trees provided the accuracy 
with lowest RMSE. The authors suggested that the 
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approach can be helpful for developing countries that 
suffer from high level of air pollution.  The last work 
of this category is based on an operational forecasting 
platform named “Prev’Air” (Debry and Mallet, 2014). 
The platform is known for daily based forecasting 
maps of O3, NO2, and PM10. The study indicated that 
using Ridge Regression method can significantly 
reduce forecast errors (RMSE) of O3 by 35%, NO2 by 
26% and PM10 by 19%. However, the limitation of the 
technique is its ineffectiveness to predict pollution 
peaks. Hence it is not applicable in cities especially 
because air quality standards here are frequently 
violated.  

Multiple component analysis
Considering the different aspects of selected 

studies, Multiple Component Analysis (MCA) was 
performed to further elaborate the results. In MCA, 
the qualitative variables are summarized with respect 
to quantitative variables i.e. MCA dimensions, to 
draw a linkage between qualitative variables through 
cloud based representation as shown in Fig. 4. The 
analysis performed suggest that the total percentage 
of inertia is slightly over 30% that an acceptable 
value considering that studies are located in an upper 
dimension space. Dimension 1 (x-axis) shows a split 

between estimation and forecast models, whereas 
dimension 2 (y-axis) reflects an association between 
qualitative variables and prediction models. It can 
be seen in Fig. 4 that, from 2013-2018 estimation 
models have been applied to predict the O3, NOx, CO 
and particular matter (PM2.5) concentrations by using 
ensemble learning and regression approaches. These 
models have generally relied on land use (land: yes) 
and satellite images (image: yes) because such models 
estimate the concentration of pollutants contributed 
by different contamination and dispersion sources. 
Whereas, on the other hand, forecasting models 
are mainly based on system applications and hybrid 
approaches to predict the prediction parameter AQI 
(PP-AQI) by using algorithms such as NN (algorithm: 
NN) and SVM (algorithm: SVM). Unlike estimation, 
these models have weak association with predictive 
features like land use (land: No) and satellite images 
(image: No).    Although dimension 2 doesn’t explain 
much as compared to dimension 1, however, it 
highlights a clear split between two different modeling 
approaches i.e. spatial resolution and nanoparticles. 
It seems as both methods are distinct and deals only 
with the specific type of predictive parameters (CO, 
PM10 and PM2.5). The paper using lazy algorithm to 
forecast the concentration of PM10 is an exception.

 
Fig. 4: Cloud point results obtained by using MCA characterizing all group articles 

   
Fig. 4: Cloud point results obtained by using MCA characterizing all group articles
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Overall the number of studies based on pollutant 
estimation (23) are nearly 1.5 times more than 
forecasting (14). Two out of five classes (i.e. number 
2 and 5) have more studies dedicated to forecasting 
models. Class 2 is based on hybrid solutions using 
deep and extreme learning algorithms, the other 
focuses on the practical significance of modeling 
tools by developing Apps or Web portals. In class 3 
forecast modeling has not performed at all, possibly 
because, the main goal of such works is to improve the 
spatial resolution by assessing pollution level.  While 
estimation models dominate in other classes. Class 1 
and 4 are other notable set of studies because more 
than 80% of their work is based on estimation models. 

Lastly, the study assesses each algorithm’s 
performance (e.g. ensemble learning, NN, SVM 
etc.) in terms of correlation coefficient achieved for 
estimation and forecasting models. Fig. 5a represents 
that around 80% of total studies considered under 
these classes have either applied ensemble learning 
or NN algorithms. It also shows that ensemble 
learning and regression techniques are the most 
commonly adopted for estimation modeling whereas 
NN and SVM based techniques are mainly applied for 
forecasting purposes. On the other hand, the average 
accuracy achieved per algorithm in Fig. 5b shows 
that ensemble learning are highly reliable techniques 
with an average correlation coefficient value 0f 0.79, 
followed by classical regression technique  (R2=0.74). 
The average prediction accuracy of SVM is also fair 

(R2=0.67), while NN based algorithms frequently 
used for forecasting, had the lowest correlation 
coefficient equal to 0.64. The success of estimations 
models (ensemble learning and regression 
techniques) is largely dependent upon on their low 
variability, conversely, the variation of the results is 
significantly higher in the forecasting models which 
is why the accuracy obtained by forecasting models is 
comparatively lower than estimation models.

CONCLUSION

The systematic review conducted reveals that since 
2017 the application of machine learning techniques 
to predict atmospheric pollution has significantly 
increased. However, due to non-uniform distribution 
the majority of studies are restricted to continent 
Europe and America. The studied work is divided into 
two main classes namely estimation and forecasting 
of air pollutant concentrations. The work indicate that 
ensemble learning and linear regression algorithms 
are suitable for pollution estimation, whereas for air 
pollution forecasting, NN and SVM based approaches 
are preferred. MCA further explains that predictive 
features such as land use and satellite images have 
a strong association with estimation models, but 
their correlation with forest models is weak.  Finally 
the performance assessment of algorithms revealed 
the superiority of ensemble learning and regression 
approaches over NN, lazy, and SVM due to their 
low variability and standard deviation as compared 

Fig. 5.a): Total number of articles dedicated to estimation and forecast modeling; b): Average prediction 
performance of major algorithms (Ensemble learning, regression, SVM and NN). 
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Fig. 5: a): Total number of articles dedicated to estimation and forecast modeling; b): Average prediction performance of major algorithms 
(Ensemble learning, regression, SVM and NN).
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to forecast models. The high accuracies achieved 
with machine learning algorithms explains it all 
why these algorithms are appropriate and should 
be preferred over traditional approaches. Although 
machine learning algorithms have registered one of 
the highest values of correlation coefficient, however, 
forecasting is still remained very much limited to 
certain models (NN and SVM) and air pollutants 
(AQI, PM10 and PM2.5). Therefore, to improve the 
prediction accuracy, model development considering 
other critical pollutants (NOx and SO2) and machine 
learning techniques (ensemble learning techniques) 
constitute the next challenge. 
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ABBREVIATIONS

ACM Association for computing machinery
AERMOD Atmospheric dispersion modeling system
ANN Artificial neural network
AOD Aerosol optical depth
AQI Air quality index
ARIMA Additive regression
BRT Boosted regression tree
CART Classification and Regression Tree
C6H6 Benzene 
C7H8 Toluene
CO Carbon monoxide
CTM Chemical transport model
DRNN Deep recurrent neural network
ELM Extreme learning machine

FIS Fuzzy inference system
HCl Hydro chloric acid

IEEE Institute of Electrical and Electronics 
Engineers

kNN K- nearest neighbor
LR Linear regression
LSTM Long short term memory
LUR Land use regression
LURF Land use random forest
M5P Regression Tree using M5 algorithm
MAE Mean absolute error
MCA Multiple component analysis
MLNN Multi-layer neural network
MLP Multilayer perceptron 
MLR Multiple linear regression

NAME Numerical Atmospheric dispersion 
Modeling Environment

NH3 Ammonia
NN Neural networks
NO2 Nitrogen dioxide
NOx Oxides of Nitrogen
N2O Nitrous oxide
nu-SVR Nu-support vector regression
O3 Ozone
OOB Out of the bag
PCA Principle component analysis
PLUME Gaussian dispersion model

PM2.5
Particles less than or equal to 2.5 
micrometers in diameter

PM10
Particles less than or equal to 10 
micrometers in diameter

PMI Partial mutual information
QRM Quantile Regression models
R2 Correlation of determination
RAE Relative absolute error
REP Tree Reduced error pruning tree
RF Random forest
RFRK Random forest regression kriging
RMSE	 Root mean squared error 
RNN Recurrent neural network
RSS Random subspace
SO2 Sulphur dioxide
STSVR Space-time support vector regression
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SVM Support vector machine
SVR Support Vector machine for regression
TCAM Transport chemical aerosol model
USA United States of America
UV spectrum Ultraviolet spectrum
XIL Trihydroxyoxan
XGBoost Extreme gradient boosting
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