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In view of pollution prediction modelling, the study adopts homogenous (random 
forest, bagging and additive regression) and heterogeneous (voting) ensemble 
classifiers to predict the atmospheric concentration of Sulphur dioxide. For model 
validation, results were compared against widely known single base classifiers 
such as support vector machine, multilayer perceptron, linear regression and 
regression tree using M5 algorithm. The prediction of Sulphur dioxide was based 
on atmospheric pollutants and meteorological parameters. While, the model 
performance was assessed by using four evaluation measures namely Correlation 
coefficient, mean absolute error, root mean squared error and relative absolute 
error. The results obtained suggest that 1) homogenous ensemble classifier 
random forest performs better than single base statistical and machine learning 
algorithms; 2) employing single base classifiers within bagging as base classifier 
improves their prediction accuracy; and 3) heterogeneous ensemble algorithm 
voting have the capability to match or perform better than homogenous classifiers 
(random forest and bagging). In general it demonstrates that the performance of 
ensemble classifiers random forest, bagging and voting can outperform single base 
traditional statistical and machine learning algorithms such as linear regression, 
support vector machine for regression and multilayer perceptron to model the 
atmospheric concentration of sulphur dioxide.
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INTRODUCTION

Considering the socio-economic ambiance of a 
territory, the health conditions of citizens are vastly 
dependent on its sanitary and ecological setting 
(Salnikov and Karatayev, 2011). Due to a vital 
connection between human health and air quality, 
atmospheric pollution level remains one of the 
several main aspects that influence human physical 
development. The consequences of inhaling 
contaminated air through bronchial tubes and 
windpipe can adversely affect alveoli – the point 
where dirt enters blood and lymph (Seinfild et al., 
1998). World Health Organization (WHO, 2014) and 
Samoli et al., 2015 have drawn a strong correlation 
between health apprehensions (cardiovascular 
system, respiratory skin diseases etc.) and increased 
concentration of air pollutants i.e. oxides of nitrogen 
(NOx), carbon monoxide (CO), sulphur dioxide (SO2), 
ground level ozone (O3). A constant monitoring of 
atmospheric pollutants is important because the 
introduction of chemicals and particulate matter (PM) 
in atmosphere beyond a certain limit results in an air 
pollution (Brunekreef, 2002). Due to negative impact 
of air pollutants on human health, other living 
organisms, crops and natural environment, it is one of 
many vital issue that metropolitan and industrial cities 
need to address (Masih, 2018a). Generally six air 
pollutants namely particulate matter (PM2.5 and PM10), 
SO2, NO2, CO, and O3 are used to calculate Air Quality 
Index (AQI) that describes the pollution level of a 
region. Increased concentrations of SO2 can be 
extremely dangerous due to its: nasty smell; ability to 
quickly react with suspended particles in air to form 
harmful acids which can cause acid rain; and most 
importantly short exposure to SO2 can aggravate 
human respiratory system which make breathing 
difficult (Brunekreef, 2002; Xie et al., 2016). Therefore, 
apart from a strict monitoring, practical significance 
demands the development of forecast models that can 
accurately predict the atmospheric concentration of 
SO2. Chemical transport models and data driven 
statistical techniques are two major types of modelling 
approaches employed in atmospheric science to 
estimate and forecast the concentrations of air 
pollutants. However, applicability of chemical models 
is limited due to several reasons such as: a thorough 
understanding of transportation; its chemical mixing 
and transformation details; which is complex to 
investigate about; computation cost; and a complete 

list of air pollutants with concentration values which is 
difficult to get (Zhan, 2018). Due to limitations of 
chemical models, nowadays data driven approaches 
are catching the attention of a number of researchers 
to model atmospheric pollutants. With technological 
progression the modelling techniques are also 
progressing to be more efficient. For example recent 
environment science and engineering researches 
(Abdul-Wahab and Al-Alawi, 2002; Schlink, et al., 2003; 
Chaloulakou et al., 2003; Grivas and Chaloulakou, 
2006; Baawain and Al-Serihi, 2014; Bedoui et al., 2016) 
(Juhos et al., 2008; Wang et al., 2008; Rahimi, 2017) 
using machine learning techniques such as artificial 
neural network (ANN), Random Forest (RF), SVM etc. 
have been preferred over classical statistical methods 
due to their enhanced performances. Although, 
machine learning tools are able to deal with non-
linearity of inventory data however, literature suggests 
that ANNs undergo from a problem of over fitting and 
local minima (Brunelli et al., 2007). Whereas advanced 
machine learning techniques like ensemble learning 
(homogenous and heterogeneous) algorithms are 
capable of dealing with issues like local minima and 
overfitting. Therefore, RF, Bagging and Voting can be 
applied as alternative approaches (Yu et al., 2016; 
Nawahda, 2016; Masih, 2018b). Literature review 
conducted in the context of this study suggests that, 
several studies in the field of air quality modelling have 
recently adopted ANNs for classification and regression 
purposes to predict the concentration of air pollutants 
such as NOx, SO2, O3 etc. (Shaban et al., 2016; Gardner 
and Dorling, 1999; Russo and Soares, 2014; Capilla, 
2014; Lu et al., 2003; Singh et al., 2012). These articles 
confirm the ability of ANN based algorithms to handle 
non-linearity and complexity of the emission datasets, 
but also point out the problems of local minima and 
over-fitting, ANNs suffer from. Few attempts were 
made to overcome these problems, but the authors 
suggested that both cannot be solved simultaneously 
(Lu et al., 2003; Wang and Lu, 2006). Later, the SVM 
performance was tested out against ANN based 
algorithm MLP by Lu and Wang, (2014) showed that on 
structural issues SVM can perform better than MLP. 
The work was considered a milestone in the field of 
atmospheric pollution prediction for further 
development. Similarly another study based on Athens 
Greece developed 84 different models and established 
that Tree and Rule classification algorithms perform 
significantly better than that of SVM and linear 



311

Global J. Environ. Sci. Manage., 5(3): 309-318, Summer 2019

regression (LR) (Riga et al., 2009). Meanwhile, a 
comprehensive application of ensemble learning 
techniques in the field atmospheric modelling was 
considered by Singh et al., 2013. The authors proposed 
an air quality model using principal component analysis 
(PCA) and ensemble learning algorithms – Bagging and 
Boosting for pollution forecasting. PCA was aimed at 
identifying the pollution sources. The study resulted in 
a significantly enhanced performance accuracy when 
compared with SVM. Similarly Cannon and Lord, 
(2000) built a model which used MLP and multilayer 
regression (MLR) as single base classifiers during the 
first phase to predict the maximum average of ground 
level ozone during the daytime. Whereas in second 
phase both classifiers were adopted within Bagging as 
base classifiers. The experiment results obtained 
suggest that, both classifiers have suffered from over-
fitting and instability when used as independent 
learners, while adopting them as base classifiers within 
bagging both resulted in an enhanced stability and 
improved accuracy. Which confirms its ability to deal 
with over-fitting and performance instability. The 
utility of homogenous ensemble learning algorithms 
RF in atmospheric sciences has been explored in a 
Sydney based study conducted by Jiang and Riley, 
(2015). The authors developed two classification 
models for performance comparison between RF and 
classification and regression tree (M5P). The study 
concluded that RF achieves better accuracy as 
compared to single base tree. While another RF based 
approach (Yu et al., 2016) have lately been constructed 
to predict AQI value by using urban public data based 
on road information, air quality and meteorological 
datasets in different regions of Shenyang. Upon a 
proficient assessment of the model, it was verified that 
RF can outperform state of the art classifiers such as 
Naïve Bayes, Logistic Regression, single decision tree 
and ANN. Ensemble learning algorithms work on a 

principle of developing multiple models, later when 
ensemble, result in an improved performance as 
compared to single based models. Discussing their 
applications,  ensemble algorithms have successfully 
been employed in multiple fields such as finance, 
bioinformatics, computer security, marketing, and 
power for load prediction (Alfaro et al., 2008; Gabralla 
and Abraham, 2014; Fathima et al., 2014; Yang et al., 
2010; Tüfekci, 2014; Van Loon, et al., 2007). Given 
these observations, the study has the following 
contributions: it draws a comparison between single 
base and ensemble learning classifiers; the results 
obtained were further tested as base classifiers, first 
within Bagging – a homogeneous ensemble learning 
technique and then within voting – a heterogeneous 
ensemble learning technique, with an aim to 
investigate about the best machine learning algorithm 
that can predict the atmospheric concentration of SO2  
with high precision by using emission and 
meteorological dataset. This study has been carried 
out in Russian Federation in 2019.

MATERIALS AND METHODS

The study uses meteorological and atmospheric 
gas concentration data, obtained from the official 
website (https://uk-air.defra.gov.uk) of Department 
of Environment Food and Rural Affairs (DEFRA). The 
dataset was recorded during 1 January to 8 May, 2013 
at a sampling rate of one hour near Marylebone road 
located in London, United Kingdom. The descriptive 
statistics of 9 attributes including 4 atmospheric 
pollutants (SO2, NO2, CO, and HCl) and 5 meteorological 
parameters (temperature, wind speed, wind direction, 
relative humidity, and atmospheric pressure) is 
presented in Table 1.

All analyses were performed in an open tool kit 
for data analysis known as Waikato Environment for 

Table 1: Descriptive statistics of air pollutants and meteorological parameters  
 

Attribute Unit Valid N Mean Minimum Maximum Standard deviation 
NO2 µ𝑔𝑔𝑔𝑔/𝑚𝑚𝑚𝑚3 2768 79.57 7.25 206.2 38.42 
SO2 µ𝑔𝑔𝑔𝑔/𝑚𝑚𝑚𝑚3 2768 45.2 0.47 141.1 40.3 
CO µ𝑔𝑔𝑔𝑔/𝑚𝑚𝑚𝑚3 2768 106.04 1.27 436.78 79.54 
HCl µ𝑔𝑔𝑔𝑔/𝑚𝑚𝑚𝑚3 2768 4.57 2.00 101.03 1.95 
Temperature °C 2768 7.02 -9.2 28.1 6.22 
Relative humidity  % 2768 66.8 45.0 101.57 6.98 
Pressure mmHg 2768 747.51 101.0 757.6 13.91 
Wind speed 𝑚𝑚𝑚𝑚/𝑠𝑠𝑠𝑠 2768 3.83 0.1 10.1 1.79 
Wind direction Degree 2768 169.68 0.1 360 107.93 

 
  

Table 1: Descriptive statistics of air pollutants and meteorological parameters
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Knowledge Analysis (WEKA). Data analysis conducted 
for this paper has several stages involved: 1) data 
collection; 2) data preprocessing; 3) Single base vs 
homogenous ensemble learning classifiers; 4) Bagging 
and Voting as explained in Fig. 1. Several observations 
were made during preliminary analysis of the dataset 
such as: 1) no clear pattern in dataset was found; 2) 
several missing values were observed in meteorological 
parameters; 3) few extreme values were recorded in 
both pollutant and meteorological features. Thus data 
needed a thorough cleaning. To do so, during data 
preprocessing, incomplete and inconsistence instances 
i.e. missing values with discrepancies were detected 
and replaced using imputation method. Similarly 
the noisy data containing outliers were removed by 
using WEKA built-in filter named interquartile range. 

Furthermore, a data transformation of wind direction 
was performed to make sure that 0 and 360 degrees 
are treated as one value. For that, Wind Speed (WS) 
and Wind Direction (WD) were combined in the form 
of two new orthogonal components: U=WS*cos (WD) 
and V= WS*sin (WD) to replace WS and WD. Lastly, 
the prepared dataset of 2768 instances were used for 
pollution modelling. The experiment design of the study 
is presented in Fig. 2. The work is divided into three 
different sets of experiments i.e. group-I, group-II and 
group-III. For group-I experiments altogether 7 models 
including 3 machine learning single base learners (MLP, 
SVM, M5P), 1 traditional statistical model (LR), and 
3 homogenous ensemble learning models (RF, AR, 
RSS) were developed. To predict the concentration 
of SO2, a comprehensive comparison was drawn 
between homogenous ensemble learning approaches 
and independent learners (i.e. single base learner 
algorithms). A single base classifiers are the algorithms 
which follow the basic rules machine learning. These 
algorithms take a training dataset and apply only one 
of the machine learning algorithm to build a prediction 
model e.g. LR, MLP, and SVM etc.  Whereas, ensemble 
learning approaches usually use multiple algorithms 
to build a model. For group-II and III experiments, the 
study employs a meta-conformal ensemble approach 
(Balasubramanian et al., 2014). The technique works 
on a principle of combining a base classifier h∈H with a 
meta-classifier m∈M to create a new combined classifier 
h:m which is more accurate than its base classifiers. 
An ensemble combines a series of k-learned models 
(m1, m2, m3,…., mk) with an aim to create an improved 
composite classification model (Balasubramanian 
et al., 2014). Considering the concept of composite 
modelling, during group-II and III experiments, all 
group-I algorithms were combined with meta-learners 
– bagging and voting respectively as shown in Fig. 2. For 
model configuration, concentration of air pollutants as 
well as environmental parameters were tested one by 
one to predict the atmospheric concentration of SO2 

 
Fig 1: Data processing and modelling scheme 

   

Bagging and 
Voting

Single‐base 
classifiersPreprocessing Data 

Collection 

Fig 1: Data processing and modelling scheme

 
Fig 2: Experiment setting 

   
Fig 2: Experiment setting
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in form of R2. The model performances were assessed 
under an experimental design of 80% training and 
20% test data. To evaluate model performance four 
widely known scales: correlation coefficient (R2), mean 
absolute error (MAE), root mean square error (RMSE), 
and relative absolute error (RAE) were used, their 
formulae are shown in Eqs. 1 to 4.
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Where, yi and xi are predicted and observed values 
respectively,  x is the average predicted value and n is 
total number of instances.

RESULTS AND DISCUSSION

The successful application of ensemble learning 
techniques in several fields is an evidence that its 
applications in the field of environmental science and 
engineering is inevitable. Therefore, for SO2 prediction, 
the performance accuracy of ensemble learning 
algorithms (RF, bagging and voting) have been assessed 

by using atmospheric pollution and meteorological 
data. Whereas for model validation the results were 
compared against other popularly known classifiers 
SVM and MLP. For experiment settings “Explorer”– a 
working environment implemented in WEKA was used. 
Besides applying WEKA implemented optimization 
algorithm named cross-validation parameter selection 
(CVPS) on all classifiers, for a fair comparison, the 
selected classifiers (SVM and MLP) were fine-tuned 
during preprocessing. In order to determine the 
optimal number of hidden layers for MLP, a range of 
experiments using 1 to 20 hidden layers were tested 
out. It can be seen in Fig. 3 that the MLP achieved 
the highest accuracy (R2=0.93) at three different 
occasions when the hidden layers were 7, 14 and 20.  
However, the study adopts 14 hidden layers because 
the error value obtained using 14 hidden neurons was 
considerably low (RAE = 44.65%) as compared to 7 and 
20 i.e. RAE = 52.41% and 48.23% respectively. 

Similarly, to determine the best kernel for SVM 
algorithm, four different kernels namely Poly kernel, 
Normalized Poly Kernel, Pearson VII function-based 
Universal kernel (PUK) and radial basis function (RBF) 
kernel were tested.  The accuracy achieved by using 
these kernels is presented in Fig. 4. It reflects that the 
performance of PUK is significantly better than that of 
other three kernels.  Hence study adopts PUK in further 
experiments. The first part of the analysis involves the 
proficiency evaluation of models.  For each model, the 
experimental design calculates correlation coefficient 
(R2) under different train/test conditions. Altogether, 
5 different training and testing scenarios based on 
different training and testing dataset ratios were tried 
and tested for each prediction algorithm as shown 

 
Fig. 4: Hidden layer selection using correlation coefficient value 
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Fig. 3: Hidden layer selection using correlation coefficient value
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in Fig. 5. Based on the best prediction performance, 
only RF, SVM, MLP and M5P out of seven classifiers 
were picked to determine the optimal training/testing 
scenario. 

Prediction performance of RF, MLP, SVM and 
M5P, under different scenarios is presented in Fig. 
5. It represents that, the performance of RF, in all 
scenarios has been the best, with a highest correlation 
coefficient equal to 0.95 under 80% –20% scenario, 
which no other classifier could achieve. While, the 
performance of M5P was the lowest among four with a 
correlation coefficient equal to 0.90. All four classifiers 
have performed the best under 80% –20% train/
test scenario. The correlation coefficient obtained 
by each classifier under 5 different situations is fairly 
high. However, the consistency of RF to standout in 
all situations is noticeable. The performance of SVM 
to accurately predict the atmospheric concentration 
of SO2 was nearly as good as that of RF under almost 

all situations. For an in depth analysis the prediction 
performance of all seven algorithms under 80% –20% 
train/test scenario was compiled in Table 2 with an 
aim to compare the performances of different single 
base algorithms against homogenous ensemble 
learning approaches. While results presented in Tables 
3 and 4 were obtained by adopting group-I classifiers 
within bagging and voting respectively by using meta-
conformity approach.

In Table 2, the performance of SVM and MLP 
have been fair with a correlation coefficient 0.94 and 
0.93 respectively. But, RF (0.95) standout to be the 
best classification algorithms among all. Though the 
prediction performance of M5P is slightly shorter (R2= 
0.92) than that of MLP (0.93), however, interestingly, 
the error values obtained for M5P (RMSE= 0.0016, 
RAE=36.88%) are significantly better than MLP 
(RMSE=0.002 and RAE=44.65%). In comparison 
other algorithms such as AR, LG and RSS have 

 
Fig. 5: SVM performance under different kernels 
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Fig. 6: Training and test scenarios 
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underperformed having low prediction accuracy and 
high error values.

During group-II experiments all seven group-I 
algorithms were employed within bagging as base 
classifiers to enquire if it affects the prediction accuracy 
of atmospheric SO2. Results presented in Table 3 are 
evident of an obvious boost observed in correlation 
coefficient for AR (from R2=0.85 to 0.88) and RSS 
(from 0.89 to 0.92) within bagging, whereas a slight 
improvement in prediction accuracy of SVM (R2=0.94 
to 0.95) was also reported. In fact the improvement 
in prediction accuracy of SVM within bagging has not 
just matched the group-I best classifier RF (R2=0.95), 
but Bagged SVM performance in terms of error values 
(RMSE=0.0013, RAE=31.11%) is slightly better than 
Bagged RF (RMSE=0.0014, RAE=32.39%). On one hand 
Table 3 confirms the ability of homogenous ensemble 
learning technique – bagging to improve the prediction 
accuracy of different single base classifiers (AR, RSS, 
SVM, M5P), whereas on the other hand, it shows its 

limitation too. Because algorithms like RF and LR stayed 
unaffected within bagging. Interestingly, adopting MLP 
within bagging has not really affected its accuracy but 
in terms of error values a clear improvement of nearly 
8% in RAE is recorded. A slight enhancement in Bagged 
MLP and Bagged SVM performances with a noticeable 
reduction in RMSE and RAE values in comparison 
with MLP and SVM as independent learners, is 
a confirmation of results reported by Windeatt, 
(2008) and Cannon and Lord, (2000) that apart from 
enhancing the prediction accuracy, bagging can solve 
over-fitting and local minima problems as well. Based 
on Tables 2 and 3, it is inferred that the performance 
of ensemble learning techniques (RF and bagging) is 
superior to that of traditional single base classifiers 
SVM, MLP, LR and M5P. 

Furthermore, to test the prediction performance 
of heterogeneous technique – Voting, group-III 
experiments were conducted by the same meta-
conformity rule.   It is important to mention here that  

Table 2: Prediction performance of different algorithms 
 
 

 
 
 
 

 
  

Classifiers R2 MAE RMSE RAE (%) 
LR 0.87 0.0015 0.002 46.61 

MLP 0.93 0.0016 0.002 44.65 
M5P 0.92 0.0012 0.0016 36.88 
RF 0.95 0.001 0.0013 30.90 
AR 0.85 0.0017 0.0022 51.64 
RSS 0.89 0.0017 0.0022 51.09 
SVM 0.94 0.001 0.0013 31.66 

 
Table 3: Prediction performance of group-I classifiers in Bagging 

 
Bagged classifiers 𝑅𝑅𝑅𝑅2 MAE RMSE RAE (%) 

Bagged-linear regression 0.87 0.0015 0.002 46.51 
Bagged-MLP 0.93 0.0012 0.0015 36.92 
 Bagged-M5P 0.93 0.0012 0.0015 35.88 

Bagged-random forest 0.95 0.0011 0.0014 32.39 
Bagged-additive regression 0.88 0.0015 0.002 45.33 
Bagged-random subspace 0.92 0.0015 0.002 46.04 

Bagged-SVM 0.95 0.001 0.0013 31.11 
 

 
  Table 4: Results of different group-I classifiers combined in voting 

 
Experiment No. Voting 𝑅𝑅𝑅𝑅2 MAE RMSE RAE (%) 

1 RF, LR, MLP 0.93 0.0012 0.0016 37.45 
2 RF,LR, M5P 0.93 0.0012 0.0015 36.05 
3 RF, M5P, AR, RSS 0.93 0.0012 0.0016 37.31 
4 LR, M5P, AR, RSS 0.91 0.0014 0.0018 41.21 
5 MLP,LR, M5P,AR,RSS 0.92 0.0013 0.0017 39.89 
6 SVM, MLP, LR, AR 0.93 0.0012 0.0016 37.26 
7 SVM, RF, M5P 0.95 0.001 0.0013 30.88 
8 SVM, RF, MLP 0.95 0.0011 0.0014 32.73 

 

Table 2: Prediction performance of different algorithms

Table 3: Prediction performance of group-I classifiers in Bagging

Table 4: Results of different group-I classifiers combined in voting
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there is no specific rule that determines the minimum or 
maximum number of base classifier for an experiment 
in Voting. In Table 4, a total of 8 different combinations 
containing 3, 4 and even 5 group-I algorithms as base 
classifiers were tried. It is worth noting that voting 
uses the same group-I algorithms as base classifiers 
but ensemble them in different sets. First three 
experiments adopt RF due to its best performance 
(strong classifier), along with other weak classifiers 
such as MLP, M5P, LG, and AR in form of different 
composite models. In experiment 4 and 5 only weak 
classifiers were considered, whereas for experiment 6 
and 7 SVM being best performer (strong classifier) was 
combined first with weak classifiers (MLP, LR, AR); and 
then with a weak (M5P) and a strong (RF) respectively. 
Last experiment only involves top group-I classifiers i.e. 
RF, SVM and MLP. 

It was fascinating to see that in general all different 
sets of classifiers have resulted in an accuracy above 
0.90. Specifically experiment 1, 2, 3 in which a strong 
classifier (RF) and 6 where SVM being strong contender 
was combined with weak classifiers, have performed 
exceptionally well by achieving a high correlation 
coefficient equal to 0.93 and low RAE value ranging 
from RAE = 36.05% to 37.45%. Although the prediction 
performance of experiment 4 and 5 is mediocre 
having R2= 0.91 and R2= 0.92 respectively, when only 
weak classifiers were considered in comparison with 
other results in Table 4, yet the accuracy values are 
good enough to compete popularly known single base 
classifiers such as MLP (R2= 0.93), M5P (R2= 0.92), and 
LR (R2= 0.87). It establishes that ensemble mixing 
of single base learners within voting irrespective of 
strong or weak classifier sets, results in an enhanced 
prediction performance. Last two results listed in 
Table 4 are worth looking at because of two reasons: 
1) their remarkably high prediction performance 
in terms of R2and error values; and 2) the type of 
composite models tried. In both experiments RF and 
SVM were considered with third classifier M5P and 
MLP respectively. Table 4 is evident that the overall 
accuracy of both combinations have produced an 
all-time high correlation coefficient of R2=0.95, but 
the error values obtained under experiment 7 when 
M5P (Tree classifier) joined RF and SVM is almost 
2% lower than that when MLP was a third classifier. 
Which reflects the superiority of tree classifiers for 
their ability to predict with high predictive accuracy 
and low error values.

CONCLUSION 

The work presented draws a comparison between 
three different types of classification schemes: single base 
learners (MLP, SVM, M5P, LR); homogenous ensemble 
(Random Forest, Bagging); and heterogeneous ensemble 
(Voting) techniques to predict the SO2 concentrations in 
air by using 4 air pollutants (SO2, NO2, CO, and HCl) and 5 
meteorological parameters (temperature, wind speed, 
wind direction, relative humidity, and atmospheric 
pressure). The results obtained suggest that 1) Random 
Forest performs significantly better as compared to 
single base classification algorithms and 2) Bagging has 
the ability to overall enhance the predictive accuracy of 
the single base learners. In fact SVM performed slightly 
better than RF when both were used as base classifiers 
within Bagging. The last set of experiments revealed 
that irrespective of type of classifiers (strong or weak), 
employing single base learners within voting, enhances 
their overall predictive accuracy. Whereas specifically, 
a set of classifiers containing SVM, RF along with M5P 
and MLP within heterogeneous ensemble classifier 
voting achieved the highest prediction accuracy (0.95) 
and lowest RMSE and RAE values (RMSE=0.001, 
RAE=30.88%). It indicates that, voting has the ability to 
efficiently compete with the best prediction classifiers 
RF (R2=0.95, RMSE=0.0013, RAE=30.9%) and bagged 
SVM (R2=0.95, RMSE=0.003, RAE=31.11%). 
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ABBREVIATIONS

ANN Artificial Neural Network
AQI Air quality index
AR Additive regression
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CO Carbon monoxide
CVPS Cross validation parameter selection

DEFRA Department for Environment Food 
and Rural affairs

HCl Hydro chloric acid
LR Linear regression
M5P Regression Tree using M5 algorithm
MAE Mean absolute error
MLP Multilayer perceptron 
MLR Multi linear regression
NO2 Nitrogen dioxide
O3 Ozone
PCA Principle Component Analysis
PM Particulate matter

PM2.5
Particles less than or equal to 2.5 
micrometers in diameter

PM10
Particles less than or equal to 10 
micrometers in diameter

PUK Pearson VII function based universal 
kernel 

R2 Correlation of determination
RAE Relative absolute error
RBF Radial basis function 
RF Random forest
RMSE	 Root mean squared error 
RSS Random subspace
SO2 Sulphur dioxide
SVM Support vector machine
WD Wind direction

WEKA Waikato Environment for Knowledge 
Analysis

WHO World Health Organization
WS Wind speed
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