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ABSTRACT: Surface waters are the most important economic resource for humans which provide water
for agricultural, industrial and anthropogenic activities. Surface water quality plays vital role in protecting
aquatic ecosystems. Unplanned urbanization, intense agricultural activities and deforestation are positively
associated with carbon, nitrogen and phosphorous related water quality parameters. Multiple buffers
give robust land use land cover and water quality model and highlight the impacts of land use land cover
characteristics on water quality parameters at various scales which will guide watershed managers for
particular application of best management practices to enhance stream health. Traditionally, water quality
data collections are based on discrete sampling and were analyzed through statistical techniques which were
designed for spatially isolated measurements. Traditional multivariate statistical approaches uncover hidden
information in water quality data but they are unable to expose spatial relationship. The complexity of
information in water quality data needs new statistical approaches which uncover spatiotemporal variability.
This review briefly discusses influences of land use land cover characteristics on surface water quality,
effects of spatial scale on land use land cover- water quality relationship, and water quality modeling using
various statistical approaches. Every statistical method has unique purpose, application and solves different
problems. This review article pinpoints that how statistical approaches in combination with spatial scale can
be applied to develop statistically significant land use land cover- water quality relationship for better water
quality evaluation.

KEYWORDS: Agricultural activities; Land use land cover (LULC); Statistical approach, Urbanization,
Water quality.

INTRODUCTION

Evaluating land use land cover (LULC) and water
quality relationship is valuable because it will give
an idea about freshwater protection which would
help us in fulfilling the growing demand of water in
various sectors including industrial usage, agricultural
consumption, municipal usage, potable water supply,
and recreational use. LULC-water quality correlation
canbe implemented to unmonitored watershed because
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monitoring is time consuming and expensive. It will
help the policy makers and watershed managers to
make proactive steps in future land use development.
Human activities have altered ecological, geochemical
and hydrological processes at all scales including
local, regional and global. Catchment characteristics
i.e. LULC, soil texture, geomorphology, topography
and socioeconomic conditions impacts the response
of water quality parameters to climatic drivers (Avril,
et al., 2007; Khan, et al., 2017; Khan, et al., 2017).
Mobilization and delivery of pollutants to receiving
waters and its concentration at catchment scale source
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are mainly influenced by LULC, land management
practices, topographic conditions, surficial geology,
climatic conditions and watershed hydrology (Lintern,
etal,2017; Zhang, et al., 2017; Keesstra, et al., 2018).
Hence, assessing LULC-water quality relationship
is challenging task for watershed managers (Tong,
et al., 2002, King, et al., 2005, Turner, et al., 2003).
Besides, spatial scale is important to determine sink/
source relationship at various scales which regulate
the surface water quality. Spatial analysis scale is
important as it highlights the area of interest which
researchers want to link with physicochemical and
biological characteristics of water quality parameters.
Upstream land area of water quality monitoring
station is responsible for water quality degradation
(Lee, et al., 2009, Mehaffey, et al., 2005, Yang, et al.,
2010). Generally, LULC-water quality relationship
are developed via buffer and subbasin scale methods
(Sliva, et al., 2001). The size of subbasin depends upon
the sampling point. Riparian buffers have varying
distance ranging from 8m to 200m (Li, et al., 2009,
Chang, 2008, Nash, ef al., 2009, Daniel, ef al., 2010).
Scale of the study is important for robust modeling
which precisely predicts water quality parameters
concentration. LULC-water quality relationship
shows regionalization (Allan, ef al., 1997, Zaccarelli,
et al., 2008, Zhou, et al.,, 2012). It’s challenging to
find appropriate technique for a certain catchment
to develop spatiotemporal LULC-water quality
relationship at several spatial scales. It is obvious
from literature that nonpoint-source pollution models
and process based watershed hydrologic models
is sophisticated in simulating complex problems
(Borah, et al., 2004). The applicability of the above
stated models are subjected to the long continuous
historical time series dataset for model calibration,
parametrization and validity. These models are
usually avoided due to limited observational data
because model development and calibration is
based on significant amount of data and empirical
parameters. Besides, some models need improvement
to get good results while simulating daily and monthly
extreme weather data. Keeping in mind the limitation
of water quality models, statistical techniques
are usually preferred over hydrologic models.
Conventional statistical approaches are widely used
to link water quality with land use which includes
redundancy analysis (RDA) (Sliva and Williams,
2001), multiple linear regression (MLR) (Amiri, et
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al., 2009), ordinary least square (OLS) (Kang, ef al.,
2010), structure equation modeling (SEM) (Wu, et al.,
2015) and principal component analysis (PCA) (Paul,
2005). Traditional statistical techniques are easy in
the sense that they are simple to learn and understand,
and robust in computing the influences of independent
variables on dependent variable. However, the main
disadvantage of these models is that they did not give
any idea about spatial variations (Kang, Lee, Cho, Ki,
Cha and Kim, 2010). LULC-water quality relationship
is extensively quantified via empirical equations
(Reimann, et al., 2009, Cunningham, et al., 2010, Utz,
et al., 2011). LULC-water quality relationship can be
easily evaluated via spatial analysis tools (ArcGIS,
FRAGSTATS and ENVI software) (Mehaffey,
Nash, Wade, Ebert, Jones and Rager, 2005, Versace,
et al, 2008, Rothwell, et al, 2010, Tu, 2011).
Spatiotemporal patterns and trends in water quality
can be extracted by various analytical approaches to
unveil the hidden information for better understanding.
These methods highlight spatiotemporal variation in
water quality. It can also specify variables causing
water quality variations. Remote sensing datasets
are spatiotemporally comprehensive. Traditional
statistical approaches are usually inappropriate to
uncover the hidden information in these datasets.
So there is a need of new approaches which fully
exploit the hidden information. Conventional
statistical approaches such as OLS are unable to
uncover spatial autocorrelation and local variations
in model parameters. To overcome the shortcomings
of traditional statistical approaches, recently
statistical approaches in combination with geographic
information system (GIS) have been introduced to
develop statistically significant LULC-water quality
relationship (Tong and Chen, 2002, Maillard, et al.,
2008, Xiao, et al., 2007). To take into account spatial
variations, advanced regressions techniques have
been introduced to uncover the complex linkage
between LULC and water quality parameters.
Geographically weighted regression (GWR) approach
is excessively used for modelling LULC-water quality
relationship by incorporating coordinates to gauge the
spatial variability. In comparison to OLS regression,
GWR gives high R? value (Tu, et al., 2008). Spatial
regression models in combination with interpolation
techniques i.e. Kriging and Inverse distance weighted
(IDW) are excessively applied to unveil the watershed
varying conditions on water quality through spatial
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autocorrelation among observations (Yang and Jin,
2010, Chang, 2008). This review article primarily
investigates statistical approaches which can be
applied to gauge land use influences on surface water
quality, differences between statistical approaches,
limitations and advantages, as well as purposes and
applications in order to expose the most suitable
statistical method for different circumstances.

Conceptual framework for water quality evaluation

Water quality is mainly deteriorated by unplanned
urbanization and intense agricultural activities.
Geological, hydrological and land use percentage
composition is extracted from satellite imagery using
catchment and buffer series approach. The extracted
variables along with water quality parameters are
subjected to statistical analysis to find the relationship
at several spatial scales. The results obtained from
LULC and water quality evaluation will be handy in
protecting freshwaters.

Data collection

Water quality data collection mainly depends upon
the research parameters, research questions, research
outcomes, and scale of the study area. Traditional
monitoring techniques provide reliable and accurate
water quality information but usually limited in space
and time. Various analysis techniques are required to
extract the underlying spatiotemporal patterns. These
approaches are applied for particular purpose and
produce different outcomes. Number of variables and
historical record of data depends upon the modeling
technique. Different researchers used different water
quality and LULC variables which are demonstrated
by Table 1. Urban, agriculture and forest land uses
are excessively analyzed. Some researcher worked
at finer scale at the above mentioned land uses
considering impervious surface area (parking lots),
commercial area, residential area and recreational
spots, crop agriculture, animal agriculture, mixed
forest, evergreen forest to unveil the complex linkage
between LULC and water quality. Water bodies and
industrial land are also tried.

Water quality explanatory variables identification
Spatial scale identifies the portion of land use which
will be linked with the physicochemical properties
of water quality monitoring station. Two methods
are usually used which includes watershed scale and

buffer (concentric and parallel) scale as demonstrated
by Fig. 1. The above stated techniques are tried by
various researchers which are demonstrated in Table 2.

Watershed scale for water quality explanatory
variables identification

In watershed scale method whole area of the
catchment is linked with physicochemical properties
of water quality monitoring station. It highlights the
influences of whole catchment on water quality. This
technique measure LULC effects on water quality
at whole catchment scale (only one spatial scale).
It suggests land use management practices at whole
catchment level. It is obvious from literature that
watersheds have stronger impacts on water quality
in comparison to buffer zone because it consider
nearer and distant pollution emission sources (Sliva
and Williams, 2001, Nash, Heggem, Ebert, Wade
and Hall, 2009, Sonoda, et al.,, 2001, Delpla, et al.,
2014). Buck et al. (2004) exposed that buffer scale is
the weaker predictor of fecal coliforms as compared
to entire catchment scale (Buck, ef al., 2004). This
method has some limitation in larger catchments due
to longer traveling distance which influences LULC-
water quality relationship owing to in stream dilution,
soil, vegetation and plants absorption (Lee, Hwang,
Lee, Hwang and Sung, 2009, Li, Gu, Tan and Zhang,
2009, Gardner, et al., 2009). Furthermore, studies
on large scale may face spatial variability due to
environmental determinants which change with space.

Buffer scale for water quality explanatory variables
identification

Buffer scale method includes two types of buffers
i.e. concentric (various radii circles around water
quality monitoring station) and parallel (runs parallel
along the stream at various distances). In this method
water quality is linked with various land uses at
multiple spatial scales. The above stated technique
enables us to judge, that how LULC-water quality
relationship changes as distance increases from
water quality monitoring station. It point out land
use conservative efforts at particular spatial scale.
Hurley and Mazumder (2013) noted that nearby
land use to surface water bodies elucidates higher
variability in water quality in comparison to entire
(Hurley, et al., 2013). Dosskey et al. (2010) found
that riparian area adjacent to water bodies are helpful
in declining surface water pollution from point and
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diffuse pollution sources (Dosskey, et al, 2010).
Watershed managers should focus on a particular
spatial scale (riparian zone) to improve water quality
(Cunningham, Menking, Gillikin, Smith, Freimuth,
Belli, Pregnall, Schlessman and Batur, 2010).
Undisturbed vegetation in riparian zone (river and
streams bank) can improve surface water quality
through the process of absorption, deposition and
denitrification by removing pollutants total solids and
nutrients (Peterjohn, et al., 1984, Zhang, et al., 2009,
Smart, et al., 2001). Removing parking lots adjacent
to stream will allow surface runoff to percolate into
the soil and join stream water (Pratt and Chang, 2012).
Major water quality variables are strongly correlated
with land use characteristics at riparian scale (Li, Gu,
Tan and Zhang, 2009).

It is obvious from the above discussion that both
spatial analysis techniques have merits and demerits.
Watershed scale approach takes into account distant
pollutant emission sources while buffer scale only
considers local scale variation in water quality.
Watershed scale technique face risk of pollutants
absorption due to long travelling distance while buffer
scale approach minimize the risk of decay due to
shorter travelling distance. Multiple buffers explain
LULC-water quality empirical relationship at several

spatial scales which give better robust model with
higher R? value having higher explanatory power.
It also highlights the influence of LULC change on
LULC-water quality relationship at various scales
which will guide watershed managers for particular
application of best management practices to improve
stream health. Study area scale selection is subjected
to the covered area.

Influences of land use on water quality impairment

Diffuse pollution is the principal environmental
problem for researchers owing to its disperse origin
and varying nature which changes with LULC
characteristics and climatic conditions (Sharpley,
et al., 1994, Griffith, 2002). Literature shows that
various kinds of land uses which include urbanization
and intense agricultural activities are the main causes
of NPS production.

Influences of agricultural activities on water quality
Intense agricultural activities usually enhance
N-parameters, P-parameters and chemical oxygen
demand (COD) in surface waters, coming from whole
catchment and riparian zone (Lee, Hwang, Lee,
Hwang and Sung, 2009, Tu, 2011, Sonoda, Yeakley
and Walker, 2001, Howarth, et al,, 2000, Ahearn, et

Table 2: Different spatial scale techniques tried to extract land use variables

Spatial scale

Scale effects on water quality

Comments

Reference

Concentric buffer technique was used
creating concentric circles of 100,
200, 400, 800 and 1500 m from water
quality monitoring station.

100m parallel buffer (riparian zone)
was created.

Whole catchment was delineated into
sub basins.

Whole catchment was delineated into
sub basins.

Whole catchment and 30-m buffer
zone analysis.

Whole catchment was delineated into
sub basins.

100m parallel buffer (riparian zone)
was created.

Sub basin plus multiple of 30m width
buffers were created up to a maximum
of 510m to each sampling point.

Whole catchment and 100 buffer zone
approach

100m, 500m, 1000m and 2000m
buffer

Industrial area is strongly associated
with water quality at smaller scale
while urban and forest land uses at
larger scale.

Multiple regression models (R?) for
sectioned watershed are superior to
buffer scale.

Strong relationship with water quality
variables.

Landscape characteristics are strongly
linked with water quality.

Integrative application of both scales
gives more robust models.
Significant linkage between water
quality and LULC.

Major ions are significantly linked
with water quality at riparian scale.

Relationship depends upon water
quality parameters.

Urban land use significantly impact
water quality at smaller scale while
forests and field land uses at whole
catchment scale.

At smaller scale, built up land

significantly impacts on water quality.

Industrial parks are located at smaller
scale while urban and forest is
located at wide spread area producing
non-point source pollution

Wider area should be considered to
take all the non-point source
pollutants

Large scale takes into account distant
non-point source pollutants.

It accounts for large scale pollution.

Take both near and distant pollution
sources.

Large scale quantifies distant non-
point source pollutants.

It is due to local variation in pollutants
emission.

Scale depends upon the main
activities responsible for water quality
parameters.

Depends upon the source of pollution.

Depends on domestic and industrial
waste water

(Zhao, Lin, Yang, Liu and
Qian, 2015)

(Pratt and Chang, 2012)

(Zhang and Wang, 2012)

(Bateni, Fakheran and
Soffianian, 2013)

(Amiri and Nakane, 2008)

(Rothenberger, Burkholder and
Brownie, 2009)
(Li, Gu, Tan and Zhang, 2009)

(Maillard and Santos, 2008)

(Sliva and Williams, 2001)

(Xiao, Wang, Zhang and
Zhang, 2016)
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Fig. 1: Watershed scale and buffer scale techniques used for water quality explanatory variables identification

al., 2005, Hill, 1981, Haidary, et al., 2013, Liu, et al.,
2012, Sun, et al., 2013, Wan, et al., 2014) as obvious
from Fig. 2. It highlights that agricultural activities
degrade surface water quality. Longer growing
seasons and excessive plowing enhance sediment
load via irrigation tail water discharges and surface
runoff which effects oxygen concentration and water
temperature resulting in unfavorable condition for
aquatic organisms (Malone, 2009). Intense application
of fertilizers and insecticides for high crop yield
can impair nearby water bodies. Surface runoff and
leaching sweep excessive phosphorous and nitrogen
from agricultural fields to nearby water bodies
which increase nutrient concentration enhancing
algal blooms and eutrophication resulting in aquatic
organisms death (Carpenter, 2008, Pérn, ef al., 2012).
Nitrate concentration in surface is attributed to over
fertilization and excessive ploughing which loosen
the soil structure making condition suitable for
surface runoff (Tong and Chen, 2002, King, Baker,
Whigham, Weller, Jordan, Kazyak and Hurd, 2005,
Unwin, et al., 2010). There are three main transport
mechanisms for nutrients including dissolution
(soil mineralization, adsorption-desorption, enzyme
hydrolysis, saturated soil nutrients solubilisation
which leads to leaching), physical (soil erosion, and
transport), and incidental (short-term displacement of
fertilizer, manure or animal feces) (Haygarth, et al.,
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1997). Source to sink transport of nutrients (N and P
parameters) is a complex phenomenon and relies on
micro-scaled processes including climatic drivers,
form (dissolved or particulate) of the nutrient, flow
pathways, flow-path length, soil, runoff, erosion and
leaching (Soranno, ef al., 2015).

Influences of urban activities on water quality

It is obvious from literature that urban sprawl
has strong positive association with N-parameters,
P-parameters and COD (Tong and Chen, 2002, Lee,
Hwang, Lee, Hwang and Sung, 2009, Li, Gu, Tan and
Zhang, 2009, Zhao, Lin, Yang, Liu and Qian, 2015,
Ahearn, Sheibley, Dahlgren, Anderson, Johnson and
Tate, 2005, Hill, 1981, Haidary, Amiri, Adamowski,
Fohrer and Nakane, 2013) as demonstrated by Fig. 2.
Human interference at urban communal level badly
effects surface water quality (Li, ef al., 2015). Change
in physical landscape and paved surface area alters
watershed hydrology which badly impacts surface
water quality (Kennen, ef al., 2010). Anthropogenic
activities at urban communal level produce various
kinds of NPS including nutrients (Emmerth, et al.,
1996, Rose, 2002, Lee, et al., 2000), heavy (metals)
(Norman, 1991, Callender, et al, 2000, Hunter, et
al., 1979), sediments (Waller, et al, 1986, Wahl, et
al., 1997), bacteria (Gregory, et al., 2000, Mallin, et
al., 2000), and other contaminants. Paved surface
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Fig. 2: Correlation between urban, forest and agriculture land uses
with N-Parameters, P-Parameters and COD

plays major role in surface water impairment at urban
communal level due to reduce infiltration, short time
of concentration and high flow volume (4rnold Jr,
et al., 1996, Paul, ef al., 2001, Morse, et al., 2003)
which fuels soil erosion, in stream silting etc. Surface
runoff sweeps point and diffuse pollutants (White, et
al., 2006). Untreated sewage and industrial effluent
due to shortage of treatment facilities also enhance
surface water pollution (Sun, ef al., 2013, Ho, et al.,
2001, Dudgeon, 1992, Ding, ef al., 2015). Combined
sewage overflow and leachate from failing septic
tanks in urban area are the principle cause of nutrients.
Nutrients are transported to nearby water bodies via
surface runoff, erosion and leaching (Ding, Jiang, Fu,
Liu, Peng and Kang, 2015).

Influences of deforestation on water quality
Literature shows that forests play protective role
in safeguarding stream health as obvious from its
negative linkage with N-parameters, P-parameters
and COD (Tong and Chen, 2002, Lee, Hwang, Lee,
Hwang and Sung, 2009, Li, Gu, Tan and Zhang,
2009, Zhao, Lin, Yang, Liu and Qian, 2015, Ahearn,
Sheibley, Dahlgren, Anderson, Johnson and Tate,
2005, Hill, 1981, Haidary, Amiri, Adamowski, Fohrer
and Nakane, 2013) as shown in Fig. 2. Forests mainly
effects watershed hydrology and water quality. Forest
soil biological and physico-chemical characteristics
have the ability to filter pollutants from water and
recycle nutrients. In forests, subsurface flow is
comparatively higher than overland flow reduces
surface runoff which decline soil erosion (Neary, et
al., 2009, Baillie, et al., 2015, O’Loughlin, 1994,
Cooper, et al., 1988, Foley, et al., 2005, Quinn, et al.,
1997). Water temperature is the direct consequence of
air temperature fueled by deforestation (Allan, et al.,
2007, Collier, et al., 2003). Deforestation practices
causes water quality problems which includes
decrease in dissolved oxygen (DO) concentration
(Baillie, et al., 2005), enhancement of soil erosion
(Fahey, et al., 2006, Fransen, et al., 2001, Marden,
et al., 2006), increase in nutrient concentration
(disruption of nutrient cycling, sediment transport
and increased leaching) (Hartman, 2004, Pike, ef al.,
2010) and enhancement in periphyton production
(increased solar radiation and nutrients) (Boothroyd,
et al., 2004, Death, et al., 2006, Reid, et al., 2010,
Thompson, et al., 2009). Deforestation fuels nitrate
(NO,) concentration in nearby surface water bodies
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due to reduced uptake of nutrients by vegetation and
decomposition of decayed plants material. Nitrate
concentration in deforested catchment is 50 times as
compared to forested catchment (Falkenmark, et al.,
1989, Brooks, et al., 2012). Forests improve water
quality owing to lower human intrusion and higher
biological nutrients retention capacity (plant and
microbial assimilation) (Gardner and McGlynn, 2009,
Ding, Jiang, Fu, Liu, Peng and Kang, 2015). LULC
is the principal determinant which degrades surface
water quality. Identification of pollution sources
originating from various types of land use and its
transport mechanism are extremely complex due to
multifactor context. LULC-water quality relationship
can give idea about the pollution sources. LULC-
water quality relationship can be exposed using
various statistical approaches. Numerous statistical
techniques are available which can be used to solve
different questions. The applications of appropriate
technique for LULC-water quality relationship are

essential for robust modelling which will help for
better water quality management.

Statistical modeling techniques to analyze water
quality problems

Various multivariate statistical techniques are
available to make relation between LULC and water
quality. Different statistical approaches details are
shown in Fig. 3. Among these techniques, some are
applicable to remote sensing observations while the
other to discrete samples data. Conventional statistical
approaches are widely used to uncover structure,
association in multivariate variables and to predict
responses (Vega, et al, 1998, Helena, et al, 2000,
Liu, et al, 2003, Reghunath, et al, 2002, Simeonov,
et al., 2003, Alberto, et al., 2001). In contrast, some
techniques are restricted to address spatial relationships
and variability which includes geographically weighted
regression (Atkinson, et al, 2001, Wooldridge, et
al., 2006). Statistical modeling needs small amount
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Ly
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Builds association between the
mentbers of two sets of data

Used for multiple hypotheses analysis

Bayesian hierarchical linear regression
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Develop spatial relationship among variables

Classification
3 Redundancy analysis
Cluster analysis Multiblock association
Classify objecis into groups €=
based on similarity . .
Regression analysis
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for grouping of objects into classes —»
between variables
>
3 Path analysis
>

Fig. 3: Summary of different statistical techniques along with their purposes and applications
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of dataset as compared to water quality models.
Commonly used statistical methods for LULC-water
quality relationship are demonstrated by Fig. 4.

Statistical approaches used for classification
Cluster analysis (CA)

CA is widely used in spatiotemporal classification of
water quality data which helps in data interpretation and
pattern identification as obvious from Fig. 4 (Singh, e?
al., 2004, Shrestha, et al., 2007). Principal limitation of
CA technique is that it assess spatiotemporal differences
but did not give any details of these differences (Alberto,
del Pilar, Valeria, Fabiana, Cecilia and de los Angeles,
2001, Yang, et al, 2009). The group characteristics
may be find after water quality data analysis which
is not known in advance (Zhao, et al, 2009, McNeil,
et al., 2005). McNeil et al. (2005) classified water
quality data into nine groups which shows that natural
processes impact surface water chemistry. Moreover,
CA is used for spatiotemporal classification in various
case studies: Suquia River in Argentina (Alberto, del
Pilar, Valeria, Fabiana, Cecilia and de los Angeles,
2001); Pisuerga River in Spain (Vega, Pardo, Barrado
and Deban, 1998); Fuji River in Japan (Shrestha and
Kazama, 2007) ; Gomti River of India (Singh, Malik,
Mohan and Sinha, 2004); and the Mahanadi River in
India (Panda, et al., 2006).

Discriminant analysis (DA)

In comparison to CA, DA has limited application
in surface waters. Literature shows that DA has
the ability to significantly reduce multivariate data
matrix by highlighting water quality variables
responsible for spatiotemporal variations (Singh,
Malik, Mohan and Sinha, 2004, Shrestha and
Kazama, 2007, Yang, Linyu and Shun, 2009, Singh,
et al., 2005, Koklu, et al., 2010). DA highlights few
variables associated with biggest variation in water
quality dataset via dimension reduction (Alberto, del
Pilar, Valeria, Fabiana, Cecilia and de los Angeles,
2001). Kowalkowski et al. (2006) used DA for the
confirmation of grouping formed by CA. The main
demerit of using DA is that it does not give any idea
about differences among the groups.

Statistical approaches used for data reduction
Factor analysis (FA) and principal component
analysis (PCA)

PCA and FA are excessively practiced for water
quality dimension reduction to expose the underlying
structure which elucidates maximum variance
(Bahar, Ohmori and Yamamuro, 2008, Vega, Pardo,
Barrado and Deban, 1998, Simeonov, Stratis,
Samara, Zachariadis, Voutsa, Anthemidis, Sofoniou and
Kouimtzis, 2003, Shrestha and Kazama, 2007, Ling,

Rescaled distance cluster combine

5 10
| |

15 20 25
| 1 1

Cluster-1

Cluster-2

Cluster-3

Fig. 4: Dendrogram showing pattern of objects homogeneity
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et al., 2017). Md. Mezbaul Bahar (2008) carried out
PCA to find out groups of LULC characteristics in
O-Hori river watershed, Japan. PCA and FA identify
main variables which causes variations in water
quality (Yang, Linyu and Shun, 2009). PCA identify
reduced number of latent factors which helps in the
identification of temporal (climatic and seasonal) and
spatial (originated from human activities) pollution
sources (Vega, Pardo, Barrado and Deban, 1998,
Simeonov, Stratis, Samara, Zachariadis, Voutsa,
Anthemidis, Sofoniou and Kouimtzis, 2003, Shrestha
and Kazama, 2007, Ling, Soo, Liew, Nyanti, Sim and
Grinang, 2017). PCA explains similar characteristics
water quality variables by only one factor (Singh,
Malik, Mohan and Sinha, 2004, Boyacioglu, et al.,
2008, Kannel, et al., 2007, Kowalkowski, et al.,
2006). Loss of information occurs, unable to explain
100% variability, while using FA and PCA which is its
major drawback.

Statistical approaches for relationship identification
Redundancy analysis (RDA)

RDA is a multi-block analysis which is excessively
practiced to evaluate LULC-water quality relationship
(Grieu, et al., 2005, De Jonge, et al., 2008, Uthicke, et
al., 2008, Ye, et al., 2009). Jun Zhao (2015) tried this
technique to model LULC-water quality relationship
(Zhao, Lin, Yang, Liu and Qian, 2015). Literature
shows that LULC-water quality relationship changes
with scale and seasons (Sliva and Williams, 2001,
Chen, et al., 2016). Direct gradient analysis isolates
highly polluted monitoring station from the remaining
better water quality monitoring sites (Sliva and
Williams, 2001, Schoonover and Lockaby, 2006,
Zeilhofer, et al., 2010).

Correspondence analysis

Correspondence analyses finds out categories
and distinguish them by separating. Same category
variables are plotted close to one another while
different categories variables are plotted far apart
(Damanik-Ambarita, et al., 2016). Jun Zhao et
al. (2015) expose that water quality of industrial
area is worse as compared to urban land and sub
urban areas (Zhao, Lin, Yang, Liu and Qian, 2015).
Correspondence analysis helps in the identification of
water contamination sources impairing water quality
at particular monitoring stations (Smilauer, et al.,
2014, Tanriverdi, et al., 2010).
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Correlation analysis

It is obvious from literature that significant
correlation exists between water quality variables and
LULC characteristics as shown in Fig.3.

Regression analysis

Literature shows that regression is extensively
used for modeling LULC-water quality relationship,
as obvious from Table 3, to expose the complexity
of associations. The most commonly used regression
analysis techniques are described in Table 3.

MAXR analysis

MAXR regression develop model from any
possible combination of independent variables.
Model selection is based on increasing number of
independent variables i.e. one independent variable
model (highest R?), best two independent variables
model, the process continues till entire independent
variables model (Cody, et al., 1997). Best predictive
model selection is based on Mallow’s Cp (sum of
square errors) and R? value. Best predictive model
has high R? and low Cp value (Yu, 2000, Moore,
et al., 2003). Jon E. Schoonover and B. Graeme
Lockaby (2006) used the above stated technique to
make relationships between land use variables and
bacteriological parameters and abiotic variables
(Schoonover and Lockaby, 2006).

Partial least square regression (PLSR) technique

PLSR technique analyze response variable based
on a set of independent variables which has highest
predicting power (Abdi, 2010). This technique
produces comparatively good results (predictions)
because it uses the most significant linear association
(Ai, et al., 2015). The above stated technique uses
the outcomes of MLR and PCA. Shortcomings of
the conventional multivariate regression methods
in analyzing noisy and multi-collinear dataset is
covered by the approaches based on multivariate
statistical projection i.e. PLSR (Abdi, 2010). PLSR
is very useful in situation when samples to variables
ration is lower (Lindberg, et al., 1983). Du Plessis
et al. (2015) used PLSR regression model to gauge
the LULC-water quality relationship (du Plessis, et
al., 2015). Fang et al. (2015) identify main variables
controlling sediment yield from agricultural
watershed using 4 different PLSR models (Fang, et
al., 2015).
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Table 3: Regression equation between water quality indicators and land use

Regression equation Reference

Ln (TN) = - 0.086 (F) - 0.057 (Village) + 0.301 (U) + 0.7 (WAT) + 0.954 (Zhang and Wang, 2012)
NOs- N =-0.083 (F) - 0.240 (Village) +0.794 (U) +1.209 (Bare) + 2.819

log Cl-=-0.04 (IS) - 0.06 (M) - 0.09 (E) - 0.06 (Ag) +8.22 (Schoonover and Lockaby,
log K+=10.007(IS) - 0.02 (M) + 1.21 2006)

TP = - 0.005 (IS) - 0.005 (M) - 0.005 (E) - 0.004 (Ag) + 0.54
log FC = 0.06 (IS) + 4.85

Na=6.591 + 0.158 (BAR)—0.075 (VEG) (Li, et al., 2008)
Cl'=26.414-0.337 (VEG)
NO;-N=0.724 + 0.102 (BAR)

Whole watershed (Basnyat, et al., 2000)
Ln(NO5)=-0.516 (FOR) — 25.244 (RES) + 3.851 (AGR) — 7.679 (Orchards)

(R?=0.1861 P =0.14)

Contributing zone

Ln(NO;y)= -3.402 (FOR) + 22.355 (RES) + 1.624 (AGR) + 5.15 (Orchards)
(R*=0.959 P=0.01)

Buffer (Pratt and Chang, 2012)
Wet season

EC=0.974 (URB) + 58.896

pH=0.031 (StDev slope) + 0.006 (URB) + 6.024

TP=0.042 (URB) + 4.486

TS=0.533 (URB) + 83.439

Temp= 0.03 (URB) — 0.089 (StDev slope) + 0.005 (Mean elevation) + 5.615

Dry season

EC=0.486 (URB) — 0.124 (Mean elevation) + 139.099

DO*= 627.083 (Mean slope) + 10,871.260 (SFR age) — 11,571.635

NN=—0.003 (Mean elevation) — 0.008 (%SFR) + 0.59

pH=0.295 (SFR age) — 0.002 (Mean elevation) + 0.029(StDev slope) + 6.963
TP=-0.017 (Mean elevation) + 0.346 (Streets) +9.713

TS=-0.409 (Mean elevation) + 5.63 (Mean slope) — 6.176(StDev Slope) + 186.291
Temp=—0.01 (Mean elevation) + 0.191 (StDev slope) — 0.017(%SFR) — 0.096 (Mean slope) + 15.06

Dry season (Maillard and Santos, 2008)
Buffer= 300 m

Turbidity= -5.985(C) -3.98E-03(RF) + 0.180(B) - 4.75E-04(S) + 7.740E-02(F) + 8.868E-02(AP) + 8.433E-02(PF)+
5.728E-02(URB)

Buffer=510 m

Nitrate= -3.294(C) -2.53E-02(RF) + 2.486E-02(B) + 1.032E-02(S) + 5.234E-02(F) + 8.074E-02(AP) + 6.804E-02(PF) +
2.976E-02(URB)

Nitrite= -0.313(C) - 4.28E-04(RF) - 3.49E-03(B) + 4.368E-04(S) + 6.766E-03(F) + 8.894E-03(AP) + 7.811E-03(PF) +
3.259E-03(URB)

Buffer= 90 m

Fecal coliform= -179283(C) + 2386.6(RF) + 7513.6(B) - 1899.4(S) + 1563.0(F) + 2078.3(AP) + 5116.4(PF) +
1717.7(URB)

Wet season

Buffer=90 m

Nitrate= 1.186E-02(C) - 1.18E-04(RF) + 1.756E-04(B) - 6.32E-04(S) - 3.42E-04(F) + 4.045E-04(AP) - 7.82E-04(PF) +
9.974E-04(URB)

Phosphorus= - 0.661(C) + 1.50E-02(RF) + 1.958E-02(B) + 11.133E-03(S) + 5.976E-03(F) - 3.57E-03(AP) + 1.720E-02
+ 3.856E-03(URB)

1-km Buffer zone. ) ) (Xian, Crane and Su, 2007)
Zn = 0.0204 (population density) + 1.9156

Cu=0.0112 (population density) + 2.7478

Oil Grease = 0.3241 (population density) + 54.79
TSS = 10.994 (population density) + 1981.2
NO;-NO, = 0.1511(population density) + 62.037
Zn = 0.4196 (ISA density) - 2.8776

Cu=0.212 (ISA density) +0.9196

0Oil Grease = 6.2325 (ISA density) -3.0067

TSS =223.13 (ISA density) - 466.39

NO;s-NO, = 2.7353 (ISA density) +42.175

C= constant, RF= Riparian Forest, B= Barren, S= Savanna, F= Forest, AP= Agro-Pastrol, PF= Planted Forest, URB= Urban, AGR= Agricultural, IS = % Impervious surface,

M = % Mixed forest, E = % Evergreen forest, Ag = % Pasture, VEG= Vegetation, SFR= Single family residential, SFR age= Average building age of SFR homes, %SFR= %
area of SFR, RES= Residential area

a= Exponentially transformed.

b= Log 10 transformed.
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Linear mixed effect model

Linear mixed effect model is based on fixed
and random effects. Fixed effects are related with
independent variables while random effects are
based on the interaction between the variable of
interest and its collection location. Seilheimer et al.
(2013) used this technique to find LULC type which
is highly associated with phosphorus concentration
(Seilheimer, et al., 2013). Linear mixed effect model
was used for predicting fecal coliforms and turbidity
(Delpla and Rodriguez, 2014). LULC-water quality
relationship can be strengthen by feeding terrestrial
determinants (Taka, et al., 2015). Linear mixed effect
model develops association between TSS, nitrate-N
flux and LULC to isolate the most significant model
using backwards stepping approach as obvious
from previous studies (Ahearn, Sheibley, Dahlgren,
Anderson, Johnson and Tate, 2005). Soranno ef al.
(2015) found 3 factors impacting land use-lake nutrient
relationships i.e. hydrologic connectivity, region and
spatial extent (Soranno, Cheruvelil, Wagner, Webster
and Bremigan, 2015).

Stepwise multiple linear regression (SMLR)

SMLR technique filters out highly significant
independent variables by dropping the less significant
explanatory variables to find the highest correlated
variables with dependent variable. Pratt and Chang
(2012) used SMLR technique to identify the most
significant independent variables which were highly
related to surface water pollution (Pratt and Chang,
2012). Xiao et al. (2016) used SMLR to investigate
LULC variable which has significant correlation with
water quality parameters at multiple scales (Xiao,
Wang, Zhang and Zhang, 2016). Mustapha and Abdu
(2012) used SMLR to find best predictor variable
which causes variations in water quality (Mustapha,
etal, 2012).

Path analysis

Path analysis is the extended format of multiple
linear regression used for identifying the strength and
underlying mechanism of cause- effect association
between the interacting webs (Grace, 2006)2006.
Path analysis assesses causal linkage. It quantifies
the effects (direct, indirect and total) of independent
variables on dependent variable. Literature shows that
this approach models the association between social,
terrestrial, hydrologic and water quality variables
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(Wu, Stewart, Thompson, Kolka and Franz, 2015,
Lewis, et al., 2007).

Ordinary least square (OLS)

OLS is a well-known regression technique which
tries to assess relations between two or more variables.
It has the ability to develop association between
independent variable and water quality variables at
large scale (creates a single regression equation). This
technique highlight the most significant variables
in regression equation (Sun, et al, 2014). OLS
regression is advantageous using Arc GIS because it
gives residual for each monitoring site, facilitating
the watershed managers to easily check spatial
autocorrelation among residuals (Pratt and Chang,
2012).

Geographically weighted regression (GWR)

GWR examines LULC-water quality relationship
by incorporating coordinates in regression equation
(Atkinson and Tate, 2001). Classical regression
techniques are independent of spatial variation
because it assumes constant relationship over
the study area (Atkinson and Tate, 2001). Local
parameters are computed by traditional regression
while GWR weights are assigned based on the
distance from the water quality monitoring station
(Huang, et al., 2015). GWR is the advance form
of traditional regression equation which captures
spatial variations by developing different regression
equations between variables at various spots in
space (Wooldridge, Brodie and Furnas, 2006). Local
coefficient of GWR evaluates the strength of water
quality-independent variables relationship (Sun, Guo,
Liu and Wang, 2014). Simply, GWR models have the
ability to compare independent variable-water quality
parameters relationships at local scale.

Bayesian hierarchical linear regression (BHLR)
BHLR technique is used for spatiotemporal
analysis because it takes into account the interaction
of variables in space and time (Pollice, ef al., 2010).
BHLR method is useful for spatiotemporal modeling
and has been proved suitable for handling missing
data prediction (Cha, et al., 2010, Pollice, et al.,
2010, Liu, et al., 2008). BHLR can be split into three
parts i.e. data model, parameter model and process
model (Wan, Cai, Li, Yang, Li and Nie, 2014). Every
part perform a specific function i.e. distribution
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of data, distribution of parameters and regression
model respectively. The above mentioned models
are connected via probability relationships (Wikle,
et al., 2003). This method is handy in evaluating
the complicated LULC-water quality relationships
at various scales (Wan, Cai, Li, Yang, Li and Nie,
2014).

DISCUSSION

Monitoring techniques provide useful water
quality data but statistical approaches and water
quality models are required to fully uncover
spatiotemporal variations. Water quality models are
really sophisticated but their applicability is subjected
to the availability of extensive data record. On the
other hand, statistical techniques are easy and need
comparatively less data record. Various statistical
approaches can be used to answer different research
questions as earlier discussed. Traditional multivariate
statistical approaches uncover hidden information
in water quality data but they are unable to expose
spatial relationship. These techniques assume constant
relationship over the study area. Average relationships

across the entire study area can hide the interesting
variability of associations. This gap is filled by GWR
which explains spatial relationships among water
quality and land use characteristics. Moreover, BHLR
has the ability to solve complex spatiotemporal
variations at multiple scales. Historically water quality
data collections are based on discrete sampling and
were analyzed through statistical techniques which
were designed for spatially isolated measurements.
Statistical approaches like CA, DA, FA, PCA etc.
have the capacity to extract meaningful results from
data. Comprehensive data, remote sensing imagery,
application for water quality monitoring, traditional
multivariate techniques like CA, DA, FA, PCA etc.
have passed through various stages of evolution
and transferred to remote sensing imagery analysis.
Statistical approaches are growing with frequent use
of remote sensing imagery for water quality analyses
to suite the requirement of comprehensive data. GWR
is suitable for comprehensive data analyses but not
solely designed for remote sensing imagery. Main
merits and demerits of statistical approaches are
demonstrated by Fig. 5.

Unable to expose spatial relationship. These approaches assumes
constant relationship among variables across the understudy area. These
techniques fails to expose interesting spatial variability of associations.
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Fig. 5: Merits and demerits of statistical approaches
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CONCLUSION

In this article we discussed spatial analysis
techniques, LULC effects on surface water quality
and various statistical techniques. This paper provides
comprehensive knowledge regarding LULC-water
quality relationship. Spatial analysis scale should be
decided based on the watershed area to get robust
LULC-water quality model for better management of
surface waters. Moreover, environmental determinants
vary in space which affects the pollutants load from
land use. For large scale studies these factors should
be considered. After studying the literature, we
concluded that physical based models need large
dataset. As compared to physical based water quality/
hydrologic modeling, statistical modeling is easy to
understand, simple, efficient with limited experimental
data set. Historically, water quality data collection is
based on discrete sampling. The aforementioned data
were analyzed via traditional statistical techniques
which suite spatially separated measurements like
PCA, regression analysis etc. Recently the application
of spatial comprehensive data source i.e. remote
sensing imagery has been extended to water quality
monitoring. Traditional statistical techniques cannot
explain the complex LULC-water quality relationship.
To overcome this problem spatial statistical techniques
were introduced like GWR etc. These techniques have
the ability to incorporate coordinates to fully exploit
the spatial variability. Moreover, BHLR has the ability
to analyze LULC-water quality relationship taking
into account spatiotemporal variation. All land use did
not contribute equal amount of pollutant to the nearby
water body. Some land use generates more while some
produce less amount of pollutant. It’s quite misleading
to assume that all land use produce equal amount of
pollutant. Area with maximum pollution production
as well as with higher discharge should be identified
to make robust relationship between water quality
and land use. Storm runoff drains more pollutants
from land as compared to dry season. It’s ambiguous
to assume that both seasons produce equal amount
of pollutants load. Rainy season should be analyzed
separately.

ACKNOWLEDGMENTS

The current study is supported by National Natural
Science Foundation of China (Grant No. 51509061),
and HIT Environment and Ecology Innovation
Special Funds (Grant No. HSCJ201607). Additional

244

support was provided by the Southern University of
Science and Technology (No. G01296001). Authors
are grateful for the suggestions from Prof. Jun Niu at
China Agricultural University.

CONFLICT OF INTEREST
The authors declare that there is no conflict of
interests regarding the publication of this manuscript.

ABBREVIATIONS
Ag % Pasture
Agr Agricultural
AP Agro-Pastrol
B Barren
BHLR Bayesian hierarchical linear regression
BMPs Best management practices
BOD Biochemical oxygen demand
CA Cluster analysis
(6(0)))] Chemical oxygen demand
DA Discriminant analysis
Division Landscape division index
DO Dissolved oxygen
E Evergreen forest
ED Edge density
F Forest
FA Factor analysis
FC Fecal coliform
For Forest
GIS Geographic information system
Gra Grass area
Gwr Geographically weighted regression
JI Interspersion and Juxtaposition Index
Ind Industrial
Isa Impervious surface area density
Lpi Largest patch index
Lsi Landscape shape index
LULC Land use land cover
M Mixed forest
Mir Multiple linear regression
Nn Nitrogen nitrate
NO,+NO, Total nitrates and nitrites
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Np Number of patches
Nps Non-point source
Ols Ordinary least square
Pca Principal component analysis
Pd Patch density
Percent SFR % area of SFR
Pf Planted forest
Pland Percentage of landscape
Plsr Partial least square regression
Rda Redundancy analysis
Res Residential area
Rf Riparian Forest
S Savanna
Sem Structure equation modeling
Sfr Single family residential
Sfr age Average building age of SFR homes
Shdi Shannon’s Diversity Index
Shei Shannon’s Evenness Index
Smir Stepwise multiple linear regression
Srp Soluble Reactive Phosphate
SS Suspended solids
TDP Total dissolved phosphorus
DS Total dissolved solids
TKN Total Kjeldahl nitrogen
Tmi Total major ion
N Total nitrogen
P Total phosphorous
Tp Total edge
Urb Urban
Veg Vegetation
Wat Water body
Wet Wetland
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