Document Type : ORIGINAL RESEARCH ARTICLE

Authors

1 Department of Environmental Management and Toxicology, College of Natural and Applied Sciences, Western Delta University, Oghara, Delta State, Nigeria

2 Centre for Landscape Ecology and GIS University of Greenwich, Faculty of Engineering and Science, Central Avenue Chatham Maritime, Kent, UK

Abstract

The rapid growth in urban population is seen to create a need for the development of more urban infrastructures. In order to meet this need, natural surfaces such as vegetation are been replaced with non-vegetated surfaces such as asphalt and bricks which has the ability to absorb heat and release it later. This change in land cover is seen to increase the land surface temperature. Previous studies have tried to explain the impact of land cover changes on the land surface temperature. However, there is a growing need to spatially quantify the extent to which temperature has increased so as to identify areas where immediate mitigation measures can be introduced. In view of this, this study has incorporated remotely sensed Landsat data with remote sensing techniques in order to effectively quantify the spatial extent of urban growth and its impact on the land surface temperature in Lagos, Nigeria. The result shows that there have been changes in the land cover which has increased the land surface temperature between 2002 and 2013. Overall, there was an increase in the highly dense areas, moderately dense areas and less dense areas by 3.35% (2200.77 ha), 27.87% (13681.35 ha), 6.20% (3284.01 ha) and a corresponding increase in the mean land surface temperature of these urban areas by 3.8 oC, 4.2 oC and 2.2 oC. Hence, it was recommended that in order to reduce the land surface temperature of urban areas, sustainable urban planning strategies that include increasing the vegetated areas and embracing other green initiatives such as urban forestry should be adopted. 

Graphical Abstract

Impact of urban land cover change on land surface temperature

Highlights

  • The Linear mixture model was seen to be suitable in helping to quantify the true nature of the land surface temperature.
  • The densely vegetated areas present in 2002 have been cleared in order to give way for more urban infrastructures such as buildings and roads.
  • It is evident from the results that the increase in land surface temperature is as a result of the increase in various heat absorbing land surface features.
  • The results of the correlation and regression reveal that non-vegetated areas have a positive influence on the overall increase in the temperatures of urban areas. 

Keywords

Main Subjects

Letters to Editor

GJESM Journal welcomes letters to the editor for the post-publication discussions and corrections which allows debate post publication on its site, through the Letters to Editor. Letters pertaining to manuscript published in GJESM should be sent to the editorial office of GJESM within three months of either online publication or before printed publication, except for critiques of original research. Following points are to be considering before sending the letters (comments) to the editor.

[1] Letters that include statements of statistics, facts, research, or theories should include appropriate references, although more than three are discouraged.
[2] Letters that are personal attacks on an author rather than thoughtful criticism of the author’s ideas will not be considered for publication.
[3] Letters can be no more than 300 words in length.
[4] Letter writers should include a statement at the beginning of the letter stating that it is being submitted either for publication or not.
[5] Anonymous letters will not be considered.
[6] Letter writers must include their city and state of residence or work.
[7] Letters will be edited for clarity and length.

CAPTCHA Image