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BACKGROUND AND OBJECTIVES: Air quality in some developing countries is dominated by 
particulate matter, especially those with size 10 micrometers and smaller or PM10. They can 
be inhaled and sometimes can get deep into lungs; some may even get into bloodstream and 
cause serious health problems. Therefore, future PM10 concentration forecasting is important 
for early prevention and in urban development planning, which is crucial for developing cities. 
This paper presents the development of PM10 forecasting model using nonlinear autoregressive 
with exogenous input model.
METHODS: To improve performance of nonlinear autoregressive with exogenous input model, 
principal component analysis is used prior to the model for variable selection. The first stage 
of principal component analysis involves Scree plot, which determines the number of principal 
components based on explained variance. This is then followed by selecting variables using a 
rotated component matrix, based on their strength of contribution towards variation of PM10 
concentration. To test the model, PM10 data in Kota Kinabalu from 2003 – 2010 was used. 
Neural network models are developed using this data by varying number of input variables 
with the inclusion of temporal variables. The developed forecasting models are evaluated 
using data PM10 in the city from 2011 to 2012. Four performance indicators, namely root mean 
square error, mean absolute error, index of agreement and fractional bias are reported. 
FINDINGS: Results from principal component analysis show that five variables including wind 
direction index, relative humidity, ambient temperature, concentration of nitrogen dioxide 
and concentration of ozone strongly contribute to the variation of PM10 concentration.  By 
using these variables together with temporal variables as input in the nonlinear autoregressive 
with exogenous input models, the resultant model shows good forecasting performance, with 
root mean square error of 7.086±0.873 µg/m3. The selection of significant variables helps in 
reducing input variables inside the forecast model without degrading its forecast performance.
CONCLUSION: This model shows very promising performance in forecasting PM10 
concentration in Kota Kinabalu as it requires fewer input variables and does not require 
variable transformation.
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INTRODUCTION
Particulate matter (PM) is one of the components 

that causes air pollution, along with other gaseous 
pollutants. In urban areas, substances such as metals, 
elemental carbon and organic matters make up PM, 
which can enter human respiratory system and causes 
various health problems depending on its size and 
composition (Kim et al., 2015; Ul-Saufie et al., 2013).  The 
health effect is more apparent on children and infants 
compared to other age groups (Karri et al., 2018). Due 
to negative health effects of PM10, it has received much 
attention from scientific community in recent years. PM10 
is constantly monitored around the world. In Malaysia, 
more than 50 air quality monitoring stations across the 
country collect and store hourly meteorological and 
air pollutant data, including PM10 under Continuous 
Air Quality Monitoring (CAQM) network (Dominick et 
al., 2012). These stations are operated by Alam Sekitar 
Sdn. Bhd., under administration of Department of 
Environment (DOE). While Kota Kinabalu is continuously 
developing, public transportation is still poor in terms 
of efficiency, reliability, safety and availability (Besar 
et al., 2020). Many commuters prefer private vehicles 
rather than public transportation, which consequently 
causes traffic congestion, especially during peak hours. 
High traffic density, especially in commercial areas, 
lead to high emission of air pollutant, mainly PM10 (Ul-
Saufie et al., 2013). Local authorities are required to 
manage public transportation and infrastructure in Kota 
Kinabalu. Furthermore, Kota Kinabalu is a developing 
city as certain roads and housing areas are currently 
under development in most areas. Therefore, it is 
essential to study the long-term forecast model. The 
forecasting and prediction model is developed as early 

preventive measures to curb negative impacts of PM10 
on health, environment, and economy. Many statistical 
approaches have been employed in developing PM10 
forecasting and prediction model. The most widely used 
method in model development is regression analysis, 
particularly the multiple linear regression (MLR) 
(Abdullah et al., 2016; Özbay et al., 2011; Ul-Saufie et 
al., 2013). MLR is relatively simple and does not require 
data from past research (Shahraiyni and Sodoudi, 
2016). Despite the popularity, MLR suffers high 
multicollinearity in which the predictor variables are 
highly correlated towards each other (Abdul Wahab et 
al., 2005). Principal component regression (PCR) solves 
the problem by applying principal component analysis 
(PCA) before MLR (Gvozdić et al., 2011). This is because 
PCA converts original predictor variables into principal 
components (PCs), reducing dimensionality in the 
process (Polat and Gunay, 2015). PCR is best suited 
for linear systems (Shahraiyni and Sodoudi, 2016). 
This does not consider non-linear relationship such 
as the behaviour of PM10 at different humidity levels 
(Lou et al., 2017). To consider non-linear relationship 
involving PM10 concentration, artificial neural network 
(ANN) is applied in developing PM10 concentration 
forecast model. ANN is a machine learning technique 
for model development inspired by biological neural 
network (Franceschi et al., 2018). Just like the human 
brain, ANN obtains relationship between input and 
output variables based on available data (Arhami et 
al., 2013). Artificial neurons in ANN are connected by 
synaptic weights. Data propagates through neurons by 
passing through summation of input-weight product 
and activation function (Elangasinghe et al., 2014), as 
shown in Fig. 1.

 
Fig 1: Basic parts of artificial neuron  

(Ul-Saufie et al., 2013) 
  

Fig 1: Basic parts of artificial neuron 
(Ul-Saufie et al., 2013)
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Several studies had focused on building and 
evaluating models to predict PM10 concentration in 
Malaysia, especifically in Peninsular Malaysia. Some 
of the predictions include long-term and short-term 
forecasting. Usage of ANN in these studies is more 
embraced in PM10 concentration forecast studies. 
Ul-Saufie et al., (2011) studied on developing a 
prediction model of PM10 concentration in Seberang 
Perai, Pulau Pinang using MLR and feedforward 
backpropagation (FFBP) neural network. The 
prediction result showed that the FFBP neural 
network outperforms MLR due to lower RMSE of 
the FFBP neural network (8.369 μg/m3) compared 
to the MLR model (9.938 μg/m3). Ul-Saufie et al., 
(2013) then conducted another study on developing 
daily PM10 concentration prediction for Nilai, 
Negeri Sembilan. Prediction models are developed 
using MLR and ANN, as well as incorporating both 
methods with PCA. The result showed that models 
that incorporate PCA have the best prediction 
performance, with PCA-ANN having the lowest 
RMSE for next day prediction (11.1071 μg/m3) 
and PCA-MLR having the lowest RMSE for the 
next two-day (RMSE = 14.4758 μg/m3) and three-
day prediction (RMSE = 18.2686 μg/m3). Then, 
another study conducted by Ul-Saufie et al., (2015) 
compared the performance of FFBP neural network 
and general regression neural network (GRNN) in 
predicting hourly PM10 concentration for the next 
three days in Seberang Jaya, a suburban located 
in Pulau Pinang. It is proven that FFBP generally 
performed better than GRNN in predicting the 
next three days of PM10 concentration. Abdullah 
et al., (2018) developed a daily PM10 concentration 
forecast model for monitoring stations in Pasir 
Gudang, Johor using the radial basis function (RBF) 
model. While RBF model shows good performance 
during training, its performance significantly 
plummets during testing. In the following year, 
Abdullah et al. (2019) conducted another study 

developing a PM10 concentration forecast model 
in Kuantan, Pahang using the multilayer perceptron 
(MLP) model, with varying numbers of neurons in 
the hidden layer and activation function. Although 
studies on predicting future PM10 concentration 
in Malaysia was conducted extensively in the past 
years, the development and evaluation of models 
have not been conducted in Sabah yet. Table 1 
presents several PM10 concentration prediction 
research using ANN model in Malaysia up to 2011. 

This study aims to present performance evaluation 
results for forecast model of PM10 concentration in 
Kota Kinabalu, Sabah in Malaysia. PM2.5 is not focused 
in this study as monitoring stations across Malaysia 
do not measure PM2.5 concentration as of the year 
2012. Nonlinear autoregressive with exogenous 
input (NARX) network was used in several studies 
in forecasting future PM10 concentration data with 
various sets of inputs (Abdulkadir and Yong, 2014; 
Saxena and Mathur, 2017; Vijayaraghavan and Mohan, 
2016). Due to its performance, NARX network was 
used in this study. Models were tested for forecasting 
performance with different sets of input variables 
along with principal component analysis (PCA) as the 
accompanying method. This study was carried out 
in monitoring station in Kota Kinabalu of Malaysia in 
2020. 

 
MATERIALS AND METHODS
Study area and location

Kota Kinabalu (5.98°N, 116.07°E) is the capital 
city of Sabah, located at west coast of North Borneo 
at an altitude of 13 m above sea level, as shown in 
its map location in Fig. 2. Based on Köppen climate 
classification, Kota Kinabalu is categorized under 
tropical rainforest climate (Chang et al., 2018). Kota 
Kinabalu experiences a hot and humid climate and 
seasonal circulation of monsoons (Djamila et al., 
2011). It is the busiest cities in Sabah as activities such 
as industry, trading and tourism are concentrated 

Table 1: Several PM10 concentration prediction research using ANN model in Malaysia from 2011 
 

Author (Year) Study area Best development method RMSE (µg/m3) 
Ul Saufie et al. (2011) Seberang Perai, Pulau Pinang FFBP 8.369 
Ul-Saufie et al. (2013) Nilai, Negeri Sembilan PCA-ANN and PCA-MLR 18.269 
Ul-Saufie et al. (2015) Seberang Perai, Pulau Pinang FFBP 18.823 

Abdullah et al. (2018) Pasir Gudang, Johor RBF with spread number of 0.3 and 
12 hidden neurons 41.067 

Abdullah et al. (2019) Kuantan, Pahang MLP 5.580 
 

  

Table 1: Several PM10 concentration prediction research using ANN model in Malaysia from 2011
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here (Noor et al., 2014). CA0030 is located in Putatan 
district, 10 km away from Kota Kinabalu city. Several 
buildings and infrastructure such as night markets and 
highway are the possible sources of PM10 measured 
by CA0030. 

One of the monitoring stations in CAQM network, 
namely CA0030, collects meteorological and air 
pollutant data in Kota Kinabalu. CA0030 is located 
in the vicinity of SMK Putatan, approximately 10 km 
from Kota Kinabalu. This monitoring station collects 
four meteorological parameters namely wind speed 
(WS), wind direction (WD), relative humidity (RH) 
and ambient temperature (Temp). It also collects five 
concentrations of air pollutants which are carbon 
monoxide (CO), nitrogen dioxide (NO2), ozone (O3), 
sulphur dioxide (SO2) and PM10. These data are 

collected at 1-hour interval. 10-year data ranging 
from 2003 to 2012 were used in this study. Table 2 
highlights the descriptive statistics of the PM10 data 
used.

 
Fig. 2: Geographic location of the study area in Kota Kinabalu, Malaysia 

  

Fig. 2: Geographic location of the study area in Kota Kinabalu, Malaysia

Table 2: Descriptive statistics of PM10 concentration in Kota Kinabalu from 2003 to 2012 
 

Descriptive statistics Values 
Mean (μg/m3) 35.90 
Standard Deviation (μg/m3) 19.10 
Skewness 2.32 
Kurtosis 16.59 
Minimum (μg/m3) 5 
Maximum (μg/m3) 495 
1st Quartile (μg/m3) 24 
Median (μg/m3) 33 
3rd Quartile (μg/m3) 42 

 

  

Table 2: Descriptive statistics of PM10 concentration in Kota 
Kinabalu from 2003 to 2012
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Data preparation
Pre-processing of data is required before it is 

applied for any calculation or forecast modelling. The 
pre-processing work includes converting WD to wind 
direction index (WDI), converting hourly data to daily 
data, adding day of year (DOY) and month of year 
(MOY), and removing missing data. Raw data includes 
WD has discontinuity at 360°. The magnitude of wind 
direction does not reflect strength of wind itself. To 
remove discontinuity at 360°, WD was converted into 
a new variable namely WDI. WD was converted using 
Eqs. 1 and 2 (Vlachogianni et al., 2011):

( )1 sin   WDI WD ϕ= + −           (1)

90maxWDϕ = − °                  (2)

WDmax in Eq. 2 represents wind direction at 
maximum PM10 concentration, while ö  in Eq. 1 
is the angle shift caused by WDmax. Both values can 
be obtained from polar plot of PM10 concentration 
against wind direction. Average values of PM10 
concentration for every direction of 16 wind compass 
points are used for polar plots. Long-term forecasting 
model is defined as a model that uses dataset with 
temporal resolution of at least one day (Shahraiyni 
and Sodoudi, 2016). To develop the model for PM10 
concentration, dataset obtained from the monitoring 
station was converted from hourly to daily temporal 
resolution. Arithmetic mean was used as 24-hour 
average value for all variables. As for WD, the average 
value was calculated using circular mean, which 
can be calculated using Eq. 3. “atan2” is a MATLAB 
function that returns the value ranging from 0° to 
360°. This function is different from inverse tangent 
which only returns values in quadrant I (angles below 
90°) and IV (angles above 270°). To preserve variation 
of WDI dataset, Eq. 3 was applied before WD is 
converted into WDI. 24 h dataset that consists of only 
missingness (CAL or N/A) is denoted as missing daily 
data.

1 1

1 1atan2 sin , cosn n
daily i ii i

WD WD WD
n n= =

 =  
 
∑ ∑  (3)

PM10 concentration in Kota Kinabalu exhibits 
daily and yearly variations (Muhammad Izzuddin et 
al., 2019). In order to take temporal variations into 
account, temporal variables such as day of year (DOY) 

and month of year (MOY) are introduced. Temporal 
variables are calculated using Eqs. 4 and 5, where dth 
represents integer day in a year, T represents number 
of days in a year, and mth represents integer month 
in a year. For example, 1st February is represented by 
dth = 32 and mth = 2. Study by Arhami et al. (2013) 
claimed that the consideration of temporal variables 
improves forecast performance of model.

2cos thdDOY
T
π =  

 
        (4)

2cos
12

thmMOY π =  
 

        (5)

Missing data leads to error in estimation during 
forecasting PM10 concentration (Cabaneros et 
al., 2017). Previous studies showed that nearest 
neighbour method (NNM) imputes data with better 
performance compared to expectation-maximization 
(EM) algorithm (Muhammad Izzuddin et al., 2020). 
This method applies for Fourier analysis which 
requires continuous stream of dataset. In this study, 
missingness is removed instead in forecast model 
development as data imputation may distort variation 
and correlation when used incorrectly (Graham, 
2009). Exclusion of missingness is appropriate as only 
6% of data are missing.

Principal component analysis (PCA)
Principal component analysis (PCA) is an assisting 

method in time series forecasting that transforms 
input variables X into a new set of variables known 
as principal components (PCs) (Gvozdić et al., 2011). 
PCA accompanies ANN by reducing the complexity of 
the neural network model by determining relevant 
inputs in forecasting future PM10 concentration (Ul-
Saufie et al., 2013). Several studies show that PCA 
improves forecasting performance of ANN model 
(Azid et al., 2014; Cabaneros et al., 2017; Ul-Saufie et 
al., 2013; Voukantsis et al., 2011). PCA converts input 
variables into PCs by evaluating loading factor l  in 
a way that every PCs are orthogonal to each other 
(Ul-Saufie et al., 2013). The relationship between X, 
l  and PC is given in Eq. 6 (Dominick et al., 2012).

1

n

i ji i
j

PC l X
=

=∑          (6)



32

M.I. Rumaling et al.

In this paper, PCA was executed using SPSS 
software version 25.0. Dataset consisting of 
meteorological variables (WS, WDI, RH, Temp) and air 
pollutant variables (CO, NO, O3, SO2) are fed into PCA. 
PM10 is not included in PCA as only input variables 
are considered in the selection of variables (Gvozdić 
et al., 2011). Apart from loading factor l  in the form 
of component matrix, PCA produces eigenvalue that 
describes the significance of each of the PCs towards 
PM10 concentration. Eigenvalue is plotted against 
respective PCs in Scree plot along with Kaiser criterion 
which states that only eigenvalue above 1 is selected 
(Azid et al., 2014). Kaiser criterion implies that the 
variation of such PCs is considered to be significant 
(Franceschi et al., 2018). The component matrix 
contains factor loadings describes the strength of 
variables in contribution towards variation of certain 
PCs (Dominick et al., 2012). To better interpret factor 
loadings in this component matrix, Varimax rotation 
is applied to convert the loading factor to Varimax 
factors (VF) by raising the value of more significant 
loadings and lowering the value of smaller loadings 
(Azid et al., 2014). The VFs reflect the strength of 
the contribution of a variable towards particular 
PCs and similarity of one variable towards the other 
(Voukantsis et al., 2011). A variable has strong 
contribution when its VF has value larger than 0.75, 

moderate for 0.50 – 0.75, and weak for 0.30 – 0.49 
(Dominick et al., 2012).

Development of ANN model
Nonlinear autoregression with exogenous input 

(NARX) is a type of neural network model that falls 
under recurrent neural network (RC-NN), whose signal 
is processed via feedforward and is back-propagated 
into input level (Biancofiore et al., 2017). NARX is 
used in air quality forecast research by using observed 
values from the past to predict PM10 concentration 
data in several time steps ahead (Vijayaraghavan and 
Mohan, 2016). Exogenous input in NARX model is 
fed with observed values of meteorological and air 
pollutant data. Previous research study has shown 
that NARX model has better forecasting performance 
of PM10 concentration compared to other models such 
as feed-forward (FF) neural network. NARX model 
is employed in developing forecast model in this 
research and its topology is illustrated in Fig. 3, where 
X represents exogenous input and Y represents PM10 
concentration data. NARX has a feedback loop which 
sends output data back to input level. A variation of 
NARX model is known as nonlinear autoregression 
(NAR), in which the forecasting of PM10 concentration 
data depends only on past values of itself (Potdar and 
Pardawala, 2017).

 
Fig. 3: NARX neural network architecture  

(Abdulkadir and Yong, 2014) 
  

Fig. 3: NARX neural network architecture 
(Abdulkadir and Yong, 2014)
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Dataset from 2003 to 2010 (8-year data) are used 
to develop open-loop NAR and NARX models using 
MATLAB version 2018b. The 8-year data is further 
divided into 3 smaller sets which are training set (70% 
of 8-year dataset), validation set (15%) and testing set 
(15%). The proportion is MATLAB default setting and 
has been used in several previous studies (Cabaneros 
et al., 2017; Ceylan and Bulkan, 2018; Feng et al., 
2015; Shekarrizfard et al., 2012). Neurons at hidden 
and output layers have their activation function set 
as tansig (hyperbolic tangent) and purelin (identity 
linear), respectively. Hidden layer uses tansig as 
activation function because it can produce normalized 
values at both positive and negative ranges (Ul-Saufie 
et al., 2013). As for the output layer, purelin activation 
function is used to optimize model performance 
(Wu et al., 2019). NAR and NARX models are trained 
using Levenberg-Marquardt (LM) algorithm because 
it trains model at relatively short amount of time 
and guarantees convergence (Yu and Wilamowski, 
2016). A total of 10 forecast models are developed 
to forecast PM10 concentration data from 2011 to 
2012 (2 years of data), by varying inputs (U, M, G, 

P and S) in 5 ways and include or exclude temporal 
variables (MOY and DOY) for each way. U (univariate) 
model uses only PM10 concentration as inputs. M 
(meteorological) model includes four meteorological 
variables (WS, WD, RH, Temp) along with PM10 
concentration data. G (gaseous) model further adds 
four air pollutant concentration variables (CO, NO2, 
O3, SO2) along with meteorological variables and 
PM10 concentration. P (principal component) model 
uses PC scores obtained from PCA as inputs instead 
of original variables. Finally, S (selection) model 
uses only certain original variables selected by Scree 
plot and rotated component matrix. These models 
are labelled by two characters, in which the first 
character denotes variables used as neural network 
model inputs (U, M, G, P and S) and second character 
denotes inclusion of temporal variables as inputs 
(0: exclude temporal variables, 1: include temporal 
variables). 10 replicates shown in Table 3 together 
with their properties were developed for each 
model to verify their stability. Ns (number of selected 
variables) is used in Table 3 because it depends on 
result from rotated component matrix. The number 

Table 3: List of developed forecast models 
 

Model Number of external 
inputs Inclusion of temporal variables Network type Number of hidden 

neurons 
U0 0 No NAR 1 
U1 2 Yes NARX 5 
M0 4 No NARX 9 
M1 6 Yes NARX 13 
G0 8 No NARX 17 
G1 10 Yes NARX 21 
P0 8 No NARX 17 
P1 10 Yes NARX 21 
S0 Ns No NARX 2Ns + 1 
S1 Ns + 2 Yes NARX 2Ns + 5 

 

  

Table 3: List of developed forecast models

Table 4: Input variables for development of forecast models 
 

Model Input variables 
U0 PM10  
U1 PM10, MOY, DOY 
M0 PM10, WS, WDI, RH, Temp 
M1 PM10, WS, WDI, RH, Temp, MOY, DOY 
G0 PM10, WS, WDI, RH, Temp, CO, NO2, O3, SO2  
G1 PM10, WS, WDI, RH, Temp, CO, NO2, O3, SO2, MOY, DOY 
P0 PM10, PC1, PC2, PC3, PC4, …, PC8  
P1 PM10, PC1, PC2, PC3, PC4, …, PC8, MOY, DOY 
S0 Significant variables from PCA 
S1 Significant variables from PCA, MOY, DOY 

 

  

Table 4: Input variables for development of forecast models
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of hidden neurons is set as 2N + 1 (N represents 
number of external inputs) following the study by 
Cabaneros et al. (2017) because it does not require 
determination of number of hidden neurons. The 
input variables for each model are listed in Table 4.

Evaluation of NAR and NARX models
To assess the forecast performance of NAR and 

NARX models, a set of performance indicators are 
used, namely root mean square error (RMSE), mean 
absolute error (MAE), index of agreement (IA) and 
fractional bias (FB). RMSE and MAE indicates accuracy 
of forecast model and are frequently used in many 
studies (Antanasijević et al., 2013; Díaz-Robles et 
al., 2008; Feng et al., 2015; Grivas and Chaloulakou, 
2006; Paschalidou et al., 2011; Wu et al., 2019). Both 
RMSE and MAE show better accuracy as their values 
approach zero. While RMSE tends to change with 
frequency distribution of error, MAE only depends on 
average magnitude of error (Willmott and Matsuura, 
2005). IA expresses the difference between predicted 
and observed values, indicating the agreement of 
both datasets as the name suggests (Fan et al., 2013). 
IA ranges from 0 to 1 with better agreement indicated 
by higher performance. FB indicates underestimation 
and overestimation of forecast model (Biancofiore 
et al., 2017). FB ranges between -2 to 2 where the 
boundary levels indicate extreme underestimation 
and overestimation respectively. These four 
performance indicators are evaluated using Eqs. 7 to 
10, where P denotes forecasted value and O indicates 
observed value. Both P  and O  are mean values of 

forecasted and observed values, respectively.

( )2

1

1 n

i i
i

RMSE O P
n =

= −∑       (7)

1

1 n

i i
i

MAE O P
n =

= −∑  (8)

( )

( )

2

1
2

1

1
n

i ii
n

i ii

O P
IA

O O P O
=

=

−
= −

− + −

∑
∑

 (9)

( )2 P O
FB

P O
−

=
+

 (10)

RESULTS AND DISCUSSION
Principal component analysis (PCA)

Eigenvalue is plotted as a function of PC in Scree 
plot as shown in Fig. 4. Red dashed line represents 
Kaiser’s criterion, implying that only PCs with 
eigenvalues above this line are selected. Based 
on Fig. 4, the first three PCs were selected as their 
eigenvalues are above 1. Other principal components 
are neglected because of their eigenvalues below 
1, implying redundancy with less important factors 
(Azid et al., 2014).

Selected PCs then undergo Varimax rotation, in 
which factor loadings are converted into VF (Table 5). 
VFs with magnitude exceeding 0.75 and corresponding 
variables are highlighted in bold. The variables that 

 

 
Fig. 4: Scree plot for PCA in CA0030 

  
Fig. 4: Scree plot for PCA in CA0030
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have VF above 0.75 in one of the PCs are WDI, RH, 
Temp, NO2 and O3, which becomes inputs for S models 
in neural network model. VFs with higher value imply 
that these variables have strong contribution towards 
variability of PM10 concentration for CA0030.

The first PC (PC1) account for 26.70% of the total 
variation of PM10 concentration. It can be seen 
from Table 5 that O3 concentration and ambient 
temperature (Temp in Table 5) shows strong positive 
contribution while relative humidity shows strong 
negative contribution towards PM10 concentration. 
This is closely correlated with meteorological 
condition in Kota Kinabalu. PM10 absorbs water 
vapour and becomes too heavy to stay suspended 
at high humidity level (Munir et al., 2017), which is a 
normal condition at Kota Kinabalu. PM10 gains kinetic 

energy from heat to stay airborne, which explains the 
strong positive contribution in ambient temperature 
(Temp). Furthermore, abundance in solar radiation is 
received by Kota Kinabalu, ranging between 278.52 
W/m2 and 407.89 W/m2 (Teong et al., 2017). This 
induces generation of ground level O3 (Xie et al., 
2015). High concentration of both O3 and PM10 occur 
simultaneously during hot climate, which leads to 
strong positive contribution in O3 concentration. PC2 
is related to motor vehicle emission and account for 
24.57% of the total variation for PM10 concentration. 
In this PC2, NO2 concentration shows strong positive 
contribution while CO concentration shows moderate 
positive contribution, with VF of 0.648. This is because 
PM10 often accompanies NO2 and CO as by-product of 
incomplete combustion by motor vehicles (Xie et al., 

 

Table 5: Rotated component matrix in CA0030 
 

Variables PC1 PC2 PC3 
WS 0.281 -0.695 -0.006 
WDI -0.014 -0.023 0.987 
RH -0.870 0.040 0.011 
Temp 0.830 0.190 -0.038 
CO 0.143 0.648 0.083 
NO2 0.040 0.832 0.022 
O3 0.767 -0.103 0.026 
SO2 0.025 0.566 -0.143 
Variance explained (%) 26.70 24.57 12.52 

 

  

Table 5: Rotated component matrix in CA0030

 
 

Fig. 5: Polar plot of PM10 concentration (radial axis) against WD (angular axis) for CA0030 
  

Fig. 5: Polar plot of PM10 concentration (radial axis) against WD (angular axis) for CA0030
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(a) 

 
(b) 

 

Fig. 6: Time series plot of forecasted data calculated using (a) U models, (b) M models, (c) G models, (d) P models, and (c) S models
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Fig. 6: Time series plot of forecasted data calculated using (a) U models, (b) M models, (c) G models, (d) P 
models, and (c) S models 
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2015). VF for NO2 concentration is higher compared 
to CO, suggesting that oxygen gas react with ambient 
nitrogen gas. As for PC3, it accounts for 12.52% of the 
total variation. It can be seen from Table 5 that WDI 
shows strong positive contribution in this PC. This 
suggests that PM10 concentration is highest when wind 
is blown from direction of WDmax, which is determined 
to be 67.5° based on red cross mark in polar plot 
as shown in Fig. 5. Examining the location of the 
monitoring station CA0030 and its vicinity shown in 
the map in Fig. 2, the direction of WDmax is indicated 
by the area in blue with 22.5° wide. It can be observed 
that night markets and highway are located inside the 
area. Wind direction blowing from these buildings and 

infrastructures may also contribute to higher PM10 
concentration.

Artificial neural network (ANN)
Ten neural network models were developed to 

forecast PM10 concentration in Kota Kinabalu from 
2011 to 2012. The result for each forecasting model 
is plotted in time series graph as shown in Fig. 6. 
It can be seen that the U model clearly does not 
forecast the future trends of PM10 concentration 
in contrast to other models. U0 model for example 
shows a future trend of PM10 concentration with the 
value settles down to a certain constant value over 
time, which does not represent the actual trend of 

(c) 

 
(d) 

 
(c) 

Fig. 6: Time series plot of forecasted data calculated using (a) U models, (b) M models, (c) G models, (d) P 
models, and (c) S models 

  

Fig. 6: Time series plot of forecasted data calculated using (a) U models, (b) M models, (c) G models, (d) P models, and (c) S models
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Table 6: Number of days exceeding allowable PM10 concentrations as forecasted by NAR and NARX models 
 

Model Number of days exceeding allowable PM10 concentration 
U0 550 
U1 0 
M0 0 
M1 8 
G0 19 
G1 22 
P0 26 
P1 31 
S0 22 
S1 28 

Actual 36 
 

  

Table 6: Number of days exceeding allowable PM10 concentrations as forecasted by NAR and NARX models

Table 7: Performance indicators (in terms of mean ± standard deviation) of neural network models for PM10 concentration in Kota 
Kinabalu 

 
Model RMSE (µg/m3) MAE (µg/m3) IA FB 

U0 9.292±0.072 7.343±0.113 0.145±0.046 -0.00002 
U1 8.740±0.295 6.876±0.268 0.458±0.092 -0.0071 
M0 7.596±0.741 5.833±0.590 0.701±0.130 0.0084 
M1 7.062±0.668 5.445±0.507 0.772±0.068 -0.0015 
G0 6.264±0.552 4.822±0.454 0.846±0.034 0.0056 
G1 6.567±0.392 5.116±0.319 0.830±0.031 -0.0059 
P0 6.236±0.526 4.850±0.421 0.844±0.034 -0.0039 
P1 5.964±0.648 4.630±0.540 0.860±0.048 -0.0054 
S0 7.109±0.450 5.500±0.365 0.779±0.041 0.0017 
S1 7.086±0.873 5.350±0.523 0.812±0.034 -0.0156 

 

 

Table 7: Performance indicators (in terms of mean ± standard deviation) of neural network models for PM10 concentration in Kota Kinabalu

PM10 concentration at all. Meanwhile, U1 model only 
forecasts rough trends of PM10 concentration. All 
other models including M, G, P and S show almost 
similar periodic pattern of PM10 concentration, in 
which the minima and maxima of PM10 concentration 
in dataset can be identified. 

According to the Malaysian Ambient Air Quality 
Guidelines (MAAQG), the allowable 24-hour average 
PM10 concentration was set as 50 μg/m3 before the 
year 2015. Based on Fig. 6(b) to (c), daily average 
PM10 concentration at certain timesteps exceeded the 
allowable limit as set in MAAQG. This is mainly due 
to unusually higher traffic density, more active night 
markets and also influence from wind direction. The 
trend of PM10 concentration events is not observed 
in Fig. 6(a) due to severe underfitting of U models as 
a result of limited number of neurons in hidden layer 
(Ceylan and Bulkan, 2018). Table 6 shows the number 
of days exceeding allowable PM10 concentration as 
forecasted by these models. Models P and S tend to 
forecast the number of days closer to the actual data. 
This shows that models P and S are able to forecast 
days exceeding allowable PM10 concentration with 
good accuracy. 

The forecast performance (in terms of mean 
± standard deviation) of all ten neural network 
models is tabulated in Table 7. None of the models 
show significant underestimation or overestimation 
as indicated by FB centred close to zero. U0 model 
shows severe underfitting, indicated by relatively low 
IA and constant trend over time as observed in Fig. 
6. This is because U0 model only uses past values of 
PM10 concentration, which is too few variables used 
for forecasting, leading to failure in capturing the 
variability of time series dataset (Dotse et al., 2018). 
This is also true for U1 which uses temporal variables 
in addition to past values of PM10 concentration.

Inclusion of meteorological and gaseous variables 
as in M and G models significantly improves the 
performance of forecasting PM10 concentration as 
measured by CA0030. Neglecting FB (as no severe 
underestimation and overestimation occurs), G0 
shows better forecasting performance (RMSE = 
6.264±0.552 μg/cm3, MAE = 4.822±0.454 μg/cm3, IA 
= 0.846±0.034) compared to M models and U models. 
This can be seen in the verification shown in Fig. 7 that 
G0 model can forecast 2-year of PM10 concentration 
data more accurately. Slight performance degradation 



39

Global J. Environ. Sci. Manage., 8(1): 27-44, Winter 2022

 
(a) 

 
(b) 

 
(c) 

Fig. 7: Time series plot of observed (blue) and forecasted (red) data by (a) G0 model,  
(b) P1 model, and (c) S1 model, for PM10 concentration in CA0030 

  

Fig. 7: Time series plot of observed (blue) and forecasted (red) data by (a) G0 model, (b) P1 model, and (c) S1 model, for PM10 concentra-
tion in CA0030
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(a) (b) 

 
(c) 

 
Fig. 8: Plot of forecasted value against observed value for (a) G0 model, (b) P1 model, and (c) S1 model 

Fig. 8: Plot of forecasted value against observed value for (a) G0 model, (b) P1 model, and (c) S1 model

occurs for G1 model as indicated by higher RMSE 
and MAE, as well as low IA. This is attributed to 
overfitting of forecast model which occurs when too 
many input variables are used (Ceylan and Bulkan, 
2018). Using PCs as input variables instead of original 
variables (as in P models) also improves performance 
of forecasting model (RMSE = 5.964±0.648 μg/m3, 
MAE = 4.630±0.540 μg/m3, IA = 0.860±0.048). It can 
be seen that unlike G models, inclusion of temporal 
variables (as in P1 model) does not cause overfitting 
because PCs are orthogonal and uncorrelated to 
each other (Ul-Saufie et al., 2013). Higher standard 
deviation in the performance indicators for P1 model 
suggests that the performance of forecast model is 
less consistent with every forecast attempt. As for S 
models, the forecasting performance is not the best 
as compared to other models, which may be due to a 
smaller number of input variables used in forecasting. 

However, S1 model is capable of forecasting PM10 
concentration with good performance (RMSE = 
7.086±0.873 μg/m3, MAE = 5.350±0.523 μg/m3, IA = 
0.812±0.034), as reflected by time series plot in Fig. 
7(b) with relatively high IA as shown in Table 7. Fig. 
8 reveals that there is moderately strong correlation 
between forecasted value from the three models 
(G0, P1 and S1) and observed value. Although the 
coefficient of correlation for the three models does 
not show strong correlation, the three models can 
still capture future trend of PM10 concentration as 
revealed by high IA values and time series plots in Fig. 
7. 

P1 model forecasts PM10 concentration in Kota 
Kinabalu with the best performance as shown in Table 
7. This is reflected by its highest IA value while having 
the lowest RMSE and MAE compared to other models. 
This is possible because P1 model uses principal 
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components converted from all variables together with 
principal components. The performance indicators in 
RMSE and MAE and show that P1 has a relatively high 
standard deviation, suggesting that slight overfitting 
occasionally occurs during development. Overall, 
S1 model forecasts PM10 concentration with good 
performance as illustrated by time series plot in Fig. 
7(b). Unlike G and P models, S1 does not require all 
input variables and PCA transformation to achieve 
good forecasting performance.

CONCLUSION
Based on PCA conducted in this research, rotated 

component matrix shows that WDI, RH, Temp, NO2 
and O3 (from the first three PCs) strongly contributes 
to variation of PM10 concentration in 10 years (from 
2003 to 2012). PC1 suggests that meteorological 
condition and ground ozone generation strongly 
contributes to PM10 concentration variation. PC2 
concerns with motor vehicle emission, mainly reaction 
of oxygen gas and ambient nitrogen gas in engines. 
PC3 is related to PM10 emission sourced from buildings 
and infrastructures, mainly night markets and highway 
located close to CA0030 monitoring station. As for 
forecast model developed using NAR and NARX, U 
models show severe underfitting, reflected by failure 
in forecasting PM10 concentration data accurately 
and is confirmed by low values of IA. Addition of 
more input variables in NARX model led to better 
forecasting performance, as indicated by M and G 
models. Among U, M and G models, the performance 
peaks at G0 model (RMSE = 6.264±0.552 μg/cm3, 
MAE = 4.822±0.454 μg/cm3, IA = 0.846±0.034), and 
overfitting occurs at G1 model as slightly too many 
input variables were used. Using principal components 
as inputs instead of original variables also show good 
performance as reflected by P models. Addition of 
temporal variables further improves the performance 
of forecast model, as in P1 (RMSE = 5.964±0.648 μg/
m3, MAE = 4.630±0.540 μg/m3, IA = 0.860±0.048). 
While P1 model in overall shows the best forecast 
performance, it is not the most ideal model when 
used in real time application. Not only that it requires 
all variables in addition with variable transformation, 
but the standard deviation of performance indicators 
also indicate that the development of P1 model is not 
the most stable. S1 model is selected because it can 
forecast PM10 concentration with good performance 
(RMSE = 7.086±0.873 μg/m3, MAE = 5.350±0.523 

μg/m3, IA = 0.812±0.034) without requiring all input 
variables and variable transformation. In real-time 
application, S1 model is preferred in forecasting PM10 
concentration data for Kota Kinabalu as it requires 
fewer input variables to achieve accurate result. The 
method of model development is yet to be studied 
for other monitoring stations in Sabah. Furthermore, 
models with fewer input variables especially univariate 
(U0) models should be studied in order to achieve 
good forecasting results without requiring many input 
variables.
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ABBREVIATIONS

0 without temporal variables (U, M, G, P and 
S models)

1 with temporal variables (U, M, G, P and S 
models)

ANN Artificial neural network
CAQM Continuous air quality monitoring
CO Carbon monoxide
dth Integer day in a year
DOE Department of Environment
EM Expectation maximization
FB Fractional bias
FF Feedforward
FFBP Feedforward backpropagation

G Gaseous (ANN model with meteorological 
and gaseous input variables)

GRNN General regression neural network
IA Index of agreement
l Factor loading
km kilometre
LM Levenberg-Marquardt
m
m2

Metre
Metre Square

mth Integer month in a year

M Meteorological (ANN model with 
meteorological input variables only)

MAAQG Malaysian Ambient Air Quality Guidelines
MAE Mean absolute error
MATLAB Matrix laboratory
max maximum value
MLP Multilayer perceptron
MLR Multiple linear regression
N Number of input variables
NAR Nonlinear autoregressive

NARX Nonlinear autoregressive with exogenous 
input

NNM Nearest neighbour method
NO2 Nitrogen dioxide

O Observed value

O  Average observed value

O3 Ozone
P Predicted value

P Principal (ANN model with PC as input 
variables)

P  Average predicted value

PC Principal component
PCA Principal component analysis
PCR Principal component regression
PM Particulate matter

PM10 
Particulate matter with aerodynamic 
diameter below 10 microns

RBF Radial basis function
RC-NN Recurrent neural network
RH Relative humidity
RMSE Root mean square error

S Selected (ANN model with selected variables 
based on rotated component matrix)

SO2 Sulphur dioxide
T Number of days in a year
Temp Ambient temperature

U Univariate (ANN model without 
meteorological or air quality input variables)

VF Varimax factor
w Synaptic weight
WD Wind direction

WDmax
Wind direction at maximum PM10 
concentration

WDI Wind direction index
WS Wind speed
W/m2 Watt per squared metre
X Input variable
μg/m3 Microgram per cubic metre
φ Shift in sine function
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