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BACKGROUND AND OBJECTIVES: Soil erosion is considered one of the major indicators of soil 
degradation in our environment. Extensive soil erosion process leads to erosion of nutrients 
in the topsoil and decreases in fertility and hence productivity. Moreover, creeping erosion 
leads to landslides in the hilly regions of the study area that affects the socio-economics of the 
inhabitants. The current study focuses on the estimation of soil erosion rate for the year 2011 to 
2019 and projection for the years 2021, 2023 and 2025.
METHODS: In this study, the Revised Universal Soil Loss Equation is used for estimation 
of soil erosion in the study area for the year 2011 to 2019. Using Artificial Neural Network-
based Cellular Automata simulation, the Land Use Land Cover is projected for the future years 
2021, 2023 and 2025. Using the projected layer as one of the spatial variables and applying 
the same model, Soil Erosion based on Revised Universal soil loss equation is projected for a 
corresponding years. 
FINDINGS: For both cases of projection, simulated layers of 2019 (land use land cover and soil 
erosion) are correlated with the estimated layer of 2019 using actual variables and validated. 
The agreement and accuracy of the model used in the case land use are 0.92 and 96.21% for the 
year 2019. The coefficient of determination of the model for both simulations is also observed 
to be 0.875 and 0.838. The simulated future soil erosion rate ranges from minimum of 0 t/ha/y 
to maximum of 524.271 t/ha/y, 1160.212 t/ha/y and 783.135 t/ha/y in the year 2021, 2023 and 
2025, respectively.
CONCLUSION: The study has emphasized the use of artificial neural network-based Cellular 
automata model for simulation of land use and land cover and subsequently estimation of soil 
erosion rate. With the simulation of future soil erosion rate, the study describes the trend in the 
erosion rate from past to future, passing through present scenario. With the scarcity of data, the 
methodology is found to be accurate and reliable for the region under study. 
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INTRODUCTION
Various naturally occurring resources are 

available around us, but soil and water resources 
are considered to be indicative of all. An increase 
in population in due course of time associates 
with increasing anthropogenic pressures to these 
resources. Checking these pressures and opting for 
practices that focus on the optimized use of resources 
with minimum stress on the environment can only 
lead to sustainable development, which is indeed 
needed in the time ahead (Renard et al., 1997). Land 
degradation is the state due to which the trait of 
soil is decreased both in physical composition and 
chemical combination, as an aftermath of a certain 
phenomenon due to certain factor. Soil erosion is the 
most significant environmental problem which leads 
to land degradation. It is defined as the damage of 
topsoil by natural agents (Gallaher and Hawf, 1997). 
The loose soil carried away by the agents during the 
soil erosion process transports anthropogenic toxic 
substance into drainage systems, which in turns 
causes other environmental pollutions (Sandra et al., 
2015). Exposure of the topsoil during rainfall; then 
detachment of loose particles and deposition of the 
particles is the stages involved in the soil erosion 
phenomena. These processes are associated directly 
with the changing land use and land cover pattern of 
the region (McCool et al., 1978). Thus, soil erosion 
can be related to changing LULC patterns, changes in 
topography, soil composition attributed to the area. 
Manipur lies in the eastern part of the Himalayan 
range and comprises hilly terrain which covers the 
majority of the total geographic area, except for 
the valley in the central portion of the state. Due 
to its topography and changing LULC pattern and 
various anthropogenic factors, the state is prone to 
land degradation. According to the study regarding 
land degradation, in 2011-2013, 26.96% of the total 
geographic extent is under degradation. 25.78% of 
the above-mentioned percentage is due to vegetation 
degradation and 0.36% is due to soil erosion (SAC, 
ISRO, 2016). The geospatial technique is a widely 
used technique for studying the environmental 
phenomenon because of its ability to integrate the 
various variable parameters and gives the synoptic 
view of the study area. These tools and techniques 
can be applied in the computation of the rate of soil 
erosion, evaluating processes and understanding its 
underlying parameters about the region (Jahun et 

al., 2015). The revised universal soil loss equation 
(RUSLE), Geographic information system (GIS)-based 
model is one of the most widely used soil erosion 
model and is improved model of original soil erosion 
model developed by Wischmeier and Smith, 1978 
(Renard et al., 1997). Models such as USLE had also 
been used for assessing the soil erosion rate in the 
river basin of the hilly terrain of North East India 
(Ghosh, et al., 2013). Physical models such as water 
erosion prediction project (WEPP), unit stream power- 
based erosion deposition (USPED) and European soil 
erosion model (EUROSEM) which requires complex 
input variables is not applied in this study due to 
the scarcity of data (Mitas and Mitasova, 2001; 
Smets, et al., 2011; Ahmadi, et al., 2020). The use 
of slope length factor in RUSLE enables to estimate 
the overland flow of the agricultural area. The model 
has advantages of limited data requirement, which 
is important for research in data-scarce regions like 
the study area and simplicity in computation. Hence, 
RUSLE is used for the assessment of soil rate in this 
study. NBSS & LUP, CSWCR&TI and Department of 
Horticulture and Soil Conservation, Government of 
Manipur jointly undertook the task for preparation 
of soil resource map and conducted soil erosion 
assessment for the state of Manipur, India, using USLE. 
The assessment detail the soil loss in the state, which 
also encompassed the study area for the year 1996 
and 2006 (Sen et al., 1996; Sen et al., 2006 ). In this 
study, estimation of soil erosion rate in Manipur river 
basin for the past 9 years (2011- 2019) and predicting 
the soil erosion rate of 2021, 2023 and 2025 has been 
the main emphasis. ANN-based CA model has been 
successfully implemented for predicting the future 
changes in land use land cover pattern (El-Tantawi, et 
al., 2019; Gharaibeh, et al., 2020; Yang, et al., 2016). 
For predicting the future soil erosion rate, a Projected 
LULC is required, which is done using MOLUSCE 
simulation. MOLUSCE, a Quantum GIS platform-
based tool enables the convenient assessment for 
land-use change modelling. The model employed 
artificial neural network (ANN) based cellular 
automata model for simulation (Rahman et al., 
2017; Saputra and Lee, 2019). The neural network, 
which is an adaptive system, is used in the study to 
estimate the vegetative index of future years. Time 
series vegetative index data are train and test in the 
neural network environment (Abujayyab and Karas, 
2019). Projected vegetative index named Normalized 
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Difference Vegetative Index is also employed as one 
of the inputs in the assessment. The application of 
the machine learning techniques for the projection 
of future scenarios; the use of simulated data and 
integration for projecting another future scenario 
is the main focus in this study. The primary aim of 
this study is a) Estimation of soil erosion rate for 
years (2011-2019), Spatio-temporally; b) prediction 
of projection of the rate of soil erosion for the year 
2021, 2023 and 2025. 

MATERIALS AND METHODS
Study area

The Loktak catchment and Chakpi river watershed 
and Manipur River watershed constitute the Manipur 
River Basin. Areal extent of basin is about 6872 sq.km, 
which is almost 31% of the expanse of Manipur state 
(Fig. 1). It comprises nine watersheds namely Imphal 
River Watershed, Upper Iril River Watershed, Lower 
Iril River Watershed, Thoubal River Watershed, Heirok 
River Watershed, Khuga River Watershed, Loktak 
Watershed, Chakpi River watershed and Manipur 
River Watershed. Soil composition of the basin differs 
along with the topography. Hill soil comprises of red 
soil due to oxidisation and a usually weathered at 

the foothills, and valley soil ranges from silt loam to 
clayey texture. The average precipitation of the basin 
ranges between 1200 to 1350 mm and temperature 
between 19°C to 21°C. The elevation of the basin 
is 720 to 800 m above mean sea level in the valley 
and rises up to 2684m in the hilly region and average 
slope of 15 degree. As the basin encompassed almost 
of all the valley region of the state, the population of 
the inhabitant is about 90% of the total population 
of the state of Manipur. Most of the agricultural 
practices are found in the valley region of the study 
area and also in some regions of hilly region. Tropical 
deciduous types of forest are found in the study area. 
(Trisal and Manihar, 2004).

Extensive percent of total built-ups and agricultural 
lands are situated in the valley region of the basin. 
Dynamic nature of built-ups and agricultural land 
affects the land cover, which is due to increase in 
inhabitant population which in turn makes land cover 
susceptible to soil erosion.

Data acquisition and methodology
For input as spatial variables, drainage distance 

raster and elevation raster is derived from DEM; 
and road distance raster is developed using the 

 
Fig. 1: Geographical location of the study area, Manipur River Basin, Manipur, India 

  

 
Fig. 1: Geographical location of the study area, Manipur River Basin, Manipur, India
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road network layer procured from north east space 
application centre, India. In both cases i.e. past 
and future soil erosion assessment, soil layers and 
topographic features are considered to be constant.

RUSLE soil erosion estimation
RUSLE is based on physical variables such slope 

length factor; soil erodibility factor; supporting 
conservation practices factor; crop management 
factor and rainfall erosivity (Sehgal and Abrol, 1994). 
RUSLE was originally designed for use in plot size or 
field size study area but due to its applicability, it is 
now often used for various scales using Eq. 1 (Panos 
et al., 2014).

A R C P K LS= × × × × 	�   (1)

Where, A is the rate of soil erosion in ton/ha.year; 
R is Rainfall Erosivity factor in MJ.mm/ha/ h/y; K is 
Soil Erodibility factor in ton.ha.h/ha.MJ.mm; LS is 
Slope Length factor; P is Practice Management Factor 
and C is Crop management Factor.

Variables used as input for estimation, in the 
model have varying spatial resolution. The entire 
inputs variables layer has been resampled to 30m 
spatial resolution to have spatial homogeneity, and 
thus the model is processed.

R – Factor                                                            
Intensity of the contact of rainfall drops with 

the ground is signified by the Rainfall Erosivity. 
Raindrop has compelling effect on soil erosion 
rate and the surface run-off and is signifies by 
R-Factor (Wischmeier and Smith, 1978). The gridded 
precipitation data are acquired from Climate hazards 
group infrareds precipitation with station data portal 
for past years and from NASA NCCS downscaled 

precipitation for future years. Both the acquired 
datasets have different spatial resolutions (Table 1) 
which are resample to 30m resolution for estimation 
of the rainfall erosivity factor. Daily precipitations 
data is acquire in both the case and are total monthly 
and eventually yearly manner for implementation in 
the equation. Eq. 2 describes the Rainfall erosivity 
equation used in this study using (Arnoldus H.M.J., 
1980).

12

1
1.735*1010

Pi(1.5log ( ) 0.08188)
P10R

−
=∑ � (2)

Where, R is Rainfall Erosivity factor in MJ.mm/
ha/ h/y; Pi is Monthly Precipitation (mm); P is Annual 
Precipitation. 

K – Factor
Impediment of loose soil against transportation 

and detachment based on the physical texture and 
carbon content is estimated as K-Factor. The factor is 
express in (ton/ha/h)/ (ha/MJ/mm) (Wischmeier et 
al., 1971). The soil of the study area is characterized 
as deep, rich in organic carbon content, slightly 
acidic and rich in nitrogen, potassium and low in 
phosphorous (Sarkar et al., 2002). In this study, the 
soil physical properties are considered to be constant 
and remain unchanged, i.e. for past years and for 
prediction same soil layers are used for the generation 
of soil erodibility layer. The gridded soil layer dataset 
namely Sand fraction percent, Silt fraction percent, 
Clay fraction percent and Organic carbon content is 
acquired from World Soil Information data portal. The 
acquired data is process and resample and used for 
estimation of soil erodibility of past years soil erosion 
and predicting future soil erosion rate.  K- Factor is 
estimated using the equation, Eq. 3 (Sharpley and 

Table 1: Input data and sources 
 

 Satellite/sensor/source Description Resolution 
Landsat-7 ETM+ C1 level1 Year: 2011 - 2013 30m 
Landsat 8 OLI/TIRS C1 level 1 Year: 2014 - 2019 30m 
CHIRPS* Precipitation data: year 2011-2019 5.55km 
NEX- GDDP dataset* Precipitation data: Year 2021, 2023 and 2025 ~ 25km 
MODIS (MOD13Q1)* NDVI data: year 2011-2019 250 m 
World soil information data portal* Soil physical raster data 250 m 
SRTM  DEM dataset, drainage distance layer  30 m 
Road network, NESAC, India Road distance raster layer 30 m 

* Dataset spatial resolution resample to 30m 

  

Table 1: Input data and sources
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Williams, 1990) 

	

	
	
                                                                                           (3)
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Where, K is soil erodibility factor; sand is sand 
fraction percent; silt is silt fraction percent; clay is clay 
fraction percent and org. c is organic carbon content.

LS – Factor 
Topographical factor indicating the distance of the 

origin point of erosion to the deposition point, as a 
result of the slope is determined by the slope-length 
factor. Higher overland flows velocities are attributed 
to and correspondingly higher erosion (Renard et al., 
1997; Wischmeier and Smith, 1978). In this study, 
the physical-based slope length factor is calculated 
using the satellite-based elevation model data, which 
is used in RUSLE (Both past years and future years), 
using Eq. 4 (Moore and Burch, 1986).

sin( ) ( )
22.13 0.0896

A m nLS θ
= ×

� (4)

Where LS is the slope length factor; A is Catchment 
Area; θ is slope angle in percent (%)

m = 0.4 and n = 1.3

C - Factor
Influences of vegetation coverage in the soil 

erosion rate estimation are significant. C - Factor is the 
variable which is defined as the correlation between 
the soil erosions from cropped land with the defined 
condition and corresponding erosion till cleaned, 
fallow continuously (Wischmeier and Smith, 1978). 
Vegetation index such as NDVI has been employed for 
the estimation of C- factor, but the equation used for 
calculation differs according to the geographic region 
under study. The equation used for assessment in the 
mid latitudinal region (Van der Knijff, et al., 2000) is 
found to be unsuitable for tropical region and hence 
different equation is used for this region, using Eq. 5 

and 6 (Durigon et al., 2014). 

	

REDNIR
REDNIR

NDVI

)
2

1NDVI
(C

+
−

=

+−
=
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=
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Where, C is Crop Management Factor 
Management; NDVI is Normalized Difference 
Vegetation Index; NIR is Near Infra-Red band; RED is 
the Red Band of imagery used.

MODIS NDVI dataset, which is of 250 m spatial 
resolution, is used in this study. The composite NDVI 
layer for each year is generated and extracted for 
the study area region and is resampled to 30m for 
estimation of C – Factor using Eq. 5.

P – Factor
Variable used in RUSLE, which is a correlation 

between the soil erosion with a specific support 
practice and the corresponding erosion with upslope 
and downslope cultivation. Relation between land 
use variable and slope factor is developed so that the 
impact on runoff, drainage and velocity resulting from 
control practice are considered. The assigned value of 
P-factor to specific land use class slope is given Table 
2. (Wischmeier and Smith, 1978). P – Factor layer is 
generated by combining the LULC layer for each year 
and slope layer generated from DEM. LULC layer for 
each years are classified into ‘Agriculture’ class and 
‘Other Land Use’ class and slope layer is reclassified 
into six classes as shown in Table 2.

MOLUSCE
The model performs the transition potential 

modelling based on Markovian approach and uses 
four different models namely Logistic Regression 
(LR); Artificial Neural Network; Weight of Evidence 

Table 2: Assigned P-factor value for different land use and slopes 
 

P- factor Land use Slope (%) 
0.100 Agriculture 0 – 5 
0.120  5 – 10 
0.140  10 – 20 
0.190  20 – 30 
0.250  30 – 50  
0.330  50 – 100  
1.000 Other land use All 

 
  

Table 2: Assigned P-factor value for different land use and slopes
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(WoE) and Multi-Criteria Evaluation (MCE) for 
training simulation model (NEXTGIS, 2017). Logistic 
regression analysis is a statistical approach of training 
the sample data to develop Relationship between 
dependent variable and sets of independent 
variable. Finally, the independent variable which has 
the best correlation will be selected for prediction. 
Artificial neural network is an adaptive system which 
develops the relation between variables so that it 
could be trained to recognize pattern, classify data 
and predict the data. Sigmoidal function is used to 
train the sample data. Weight of evidence training 
model was initially develop to train only binary 
model, but was later modified so that it could train 
continuous data. In this module, the continuous data 
are categorized into classes (maximum of 100 classes) 
and weights are estimated to predict the data. Multi 
criteria evaluation training model is based on Saaty’s 
hierarchal analysis. It is a systematic approach to make 
decision for complex problems (GIS Lab, 2018). In this 
study, Cellular Automata - ANN approach is used for 
predicting future LULC and soil erosion rate for the 
area under study. LULC layers (Years 2011-2019) are 
generated using Maximum Likelihood Classification 
technique employing Landsat multispectral imageries 
as inputs. LULC of the year 2019, 2017, 2015 and 2013 
is used as inputs in the MOLUSCE model to generate 
the Projected LULC of 2021, 2023 and 2025. Road 
distance raster layer, Drainage distance layer and 
elevation are employed as the spatial variable (Driving 
Factor) for the ANN Transition potential modelling. 
Pearson’s Correlation method is used in the model 
tool for calculating the correlation among the spatial 
variables or driving factors, which are in turn used in 
ANN potential modelling. Projected future LULC is 
generated using CA Simulation. Road distance raster 
layer is generated using the road network file and 
drainage distance and Elevation are obtained from 
SRTM-DEM. To validate the model and to assess 
the degree of agreement and accuracy, LULC of the 
year 2019 is simulated using LULC of the 2017 and 
2018. The simulated LULC of 2019 is validated using 
the actual LULC of 2019, which is generated using 
Landsat Imageries as mentioned above. MOLUSCE 
model tool is widely used for projection of the future 
LULC. However, for this study, the tool is used for 
simulation and projection of soil erosion class also. 
As the input layers should be qualitative raster, the 
quantitative soil erosion rate raster obtained from 

RUSLE is classified to qualitative form and is used as 
inputs. Soil erosion datasets of 2019, 2017, 2015 and 
2013 are used for projecting the future soil erosion 
of years 2021, 2023 and 2025. In the case of Soil 
Erosion simulation, Drainage distance, Elevation, 
LULC and precipitation for the year to be simulated 
are used spatial variable or driving factor. Simulated 
LULCs of the future years are input as spatial variables 
for each case and future projected precipitation is 
acquired from NASA Earth Exchange Global Daily 
Downscaled Projection (NEX – GDDP) precipitation 
dataset (Thraser et al., 2012). Similar to previous 
case, Pearson’s Correlation method is used in the 
model tool for calculating the correlation among the 
spatial variables or driving factors, which are in turn 
used in ANN potential modelling and simulation is 
done by CA approach. As in the case of LULC future 
dataset simulation, validation for the agreement and 
accuracy of the model is done by simulating the soil 
erosion dataset of the year 2019 using the soil erosion 
dataset of 2017 and 2018 and follows by validation 
using the actual soil erosion dataset of the year 2019.

RESULTS AND DISCUSSION
Soil erosion rate estimation

The estimated soil erosion rate is classified into 
five soil erosion classes. Classification by NBSS and 
LUP is adapted for classifying the soil erosion class 
for this study. According to this adaptation, the 
classified soil erosion qualitative classifications are 
‘No Erosion’ (<5 t/ha/y); ‘Slight Erosion’ (5 to 10 t/
ha/y); ‘Moderate Erosion’ (10 to 20 t/ha/y); ‘High 
Erosion’ (20 to 40 t/ha/y) and ‘Intense Erosion’ (> 
40 t/ha/y) (Table 3). According to the study adapted 
above, soil erosion less than 5 t/ha/y shows no effect 
on the effectiveness of the conservative structure. 
Thus the tolerable soil erosion limit of the study area 
is taken to be soil erosion rate less than 5 t/ha/y (Sen 
et al., 2006). The corresponding area in square km. 

Table 3: Soil erosion rate classification limit (based on national bureau of soil survey and land use planning)  
 

Class Range (t/ha/y) 
No Erosion < 5 
Slight Erosion 5 - 10 
Moderate Erosion 10 - 20 
High Erosion 20 - 40 
Intense Erosion > 40 

 

  

Table 3: Soil erosion rate classification limit (based on national 
bureau of soil survey and land use planning)
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for the Soil Erosion class for the years 2011 to 2019 is 
shown in Fig. 2. Even though there is variation in the 
area under ‘No Erosion’ class, an increasing trend is 
observed overall in this class from the year 2011 to 
2019. 2013 has lowest percentage with 39.36% and 
2018 and 2019 have the highest with 48.69% and 
48.57% respectively. ‘Slight Erosion’ in the study area 
is observed to follow the increasing trend during the 
period of study. With percentage 5.10% in the 2011 
increases up to 14.53% in 2018 and 13.27% in 2019. 
Gradual increment with variation is observed in the 
‘Moderate Erosion’ class. Except for 2013, where 
the percentage declines to 12.40%, remaining years 
shows the gradual rise in percentage from 22.81% in 
2011 to 29.92% in 2017. In case of ‘High Erosion’ class, 
a positive response is observed throughout the period 
under study. The percentage of total area under this 
class has been gradually reducing since 18.16% in 
2011 to 6.30% and 7.13% in 2018 and 2019, except 
for slight increment up to 18.64% in 2013. ‘Intense 
Erosion’ class also indicates positivity, as there is 
decline in the total percentage of area coverage in 
this class over the year. From 12.96% in 2011 to 3.32% 
and 3.80% in 2018 and 2019 respectively, except for 
an abrupt rise to 25.18% in 2013.

The range of soil erosion rate for the year 2011 to 
2019 is depicted in maps in Fig. 3. Quite a variation is 
observed in the maximum soil erosion rate from the 
year 2011 to 2019. An increasing trend is followed 
from the year 2011 to 2015 with maximum soil 

erosion rate 776.63 t/ha/y to 1253.7 t/ha/y and 
then decreasing trend follows to 2019 estimating the 
maximum soil erosion rate of 266.45 t/ha/y (Table. 4).

Future LULC projection using MOLUSCE
Using MOLUSCE model tool, LULC of the future 

year 2021, 2023 and 2025 of the study area has been 
projected in this study (Fig. 4). In the projected future 
LULC, variations in the spatial extent of the land use 
class is observed as result. Area under ‘Vegetation’ 
class shows decrease in area from the year 2021 to 
2023 and then grows in the year 2025. Spatial extent 
of classes ‘Agriculture’;’ Water Bodies’ and ‘Barren’ 
shows similar trends of change in area. Area coverage 
increases from 2021 to 2023 and decreases in the 
year 2025. ‘Built Up’ class shows growth in the most 
unique pattern. Extent of area coverage expanse over 
the time from 2021 to 2025 and is shown in Fig. 5.

In this study, ANN based transition potential 
modelling is performed and sample data are train. 
Then, the trained data are used for CA simulation 
and simulated layer is generated. For validation of 
the output simulated layer, accuracy assessment, 
kappa statistics is done and overall accuracy of the 
model is found to be 96.21% for 2019 simulation. 
Also, agreement of the model expressed in terms of 
Kappa Coefficient is observe as 0.92 which is almost 
perfect model (Landis and Koch, 1977). Regression 
analysis is perform between area of each classes 
from actual LULC 2019 and projected LULC 2019 so as 

 

Fig. 2: Area under different soil erosion class in km2 (2011-2019) 
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Fig. 3: Soil erosion maps (2011-2019) 

  

Fig. 3: Soil erosion maps (2011-2019)
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to determine the proportion of variance dependent 
variable i.e. projected LULC 2019. The co-efficient 
of determination, R2 of the regression is found to be 
0.875 which shows the high accuracy of the model.

Future soil erosion projection using MOLUSCE
The projected future soil erosion depicts 

the future trend in quite a positive nature when 
comparison is done with the soil erosion layer of 

 
Fig. 4: Projected LULC map of 2021, 2023 and 2025 

  

Fig. 4: Projected LULC map of 2021, 2023 and 2025

 
Fig. 5: Area under different LULC classes of 2021, 2023 and 2025 
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Table 4: Area of the land use classes (areas in km2) 
 

Class/Value LULC 2019 Projected LULC 2019 Residual 
Vegetation 3271.954 3394.049 96.403 
Agriculture 904.691 930.366 97.240 
Built Up 531.307 471.686 112.640 
Water Bodies 236.993 249.148 95.122 
Barren 1787.161 1686.856 105.946 

 

  

Table 4: Area of the land use classes (areas in km2)
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Fig. 6: (a) LULC 2019 vs projected LULC 2019 map; (b) LULC 2019 vs projected LULC 2019 (Areas in km2) 

  

Fig. 6: (a) LULC 2019 vs projected LULC 2019 map; (b) LULC 2019 vs projected LULC 2019 (Areas in km2)

Fig. 7: Soil erosion classes map for the year 2021, 2023 and 2025 

  

Fig. 7: Soil erosion classes map for the year 2021, 2023 and 2025
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2019 (Fig. 7). Variation in the soil erosion rate is 
observed from the estimated layers. Maximum soil 
erosion rate increases abruptly from 52.4.271 t/ha/y 
in year 2021 to 1160.212 t/ha/y in 2023. Again, the 
maximum ranges down to 783.135 t/ha/y in 2025 
(Fig. 7). Resultant soil erosion rate is classified in five 
qualitative class based on the classification shown in 

Table 3. As depicted in graphical format in Fig. 8, the 
soil erosion classes namely ‘Moderate Erosion’; ‘High 
Erosion’ and ‘Intense Erosion’ shows the decreased 
in area coverage over the time and ‘No Erosion’ and 
‘Slight Erosion’ class shows the increase in area as 
the time lapses. In case of ‘No Erosion’ class, there 
increase in area coverage is observed with 6.14%, 

Fig. 8: Area under different soil erosion classes for the year 2021, 2023 and 2025 (Areas in km2) 
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Fig. 9: Soil erosion test site within the basin 

  

Fig. 9: Soil erosion test site within the basin
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6.70% and 8.26% of total area in 2021, 2023 and 
2025 respectively. Areas under ‘Slight Erosion’ class 
decreases 1.49% to 0.22% in 2021, 2023 and then, 
increases to 1.07% in 2025. Highest rate of decreases 
in the area is observed in the ‘Moderate Erosion’ class. 
The area declines by 2.49% in 2021, 4.37% in 2023 
and 4.80% in 2025. The area under ‘High Erosion’ 
class reduces with 1.30% in 2021, 1.07% and 1.35% 
in 2023 and 2025 respectively. ‘Intense Erosion’ class 
also shows declining in the area, which is a positive 
indication. 0.86% is decrease in 2021, 1.05% in 2023 
and 1.04% in 2025 is the percentage of area decrease 
under the above mention class.

Validation of future soil erosion rate model
For the validation of the model, a plot scale 

catchment is considered within the study area as 
test site. The total area of the test site is 135809.30 
sq.m., which is a plantation site. For estimating the 

soil erosion rate of the test site, observed data such 
as topographic survey is conducted using total station 
every month for the year 2019, NDVI is measured 
using the NDVI meter and soil samples are taken. 
Elevation profile of the test site is obtained and thus 
slope length factor is estimated. C- Factor is estimated 
using the NDVI data and P-factor is estimated using 
the land use and slope layer which is generated using 
the elevation layer. K- Factor is estimated by testing 
the soil samples and finally R- factor is estimated using 
the precipitation data obtained from the automatic 
weather station installed nearby the test site. Thus, 
soil erosion rate of the test site is estimated for the 
year 2019. 

Validation of the model is performed by using 
the observed soil erosion rate layer of the year 2019 
(observed 2019). For model validation, using the 
same model-simulated soil erosion rate layer of 2019 
(simulated 2019) is also generated. Random 155 

 

Fig. 10: Observed soil erosion rate Vs simulated soil erosion rate 
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Table 5: Area under each class for soil erosion 2019 and projected soil erosion 2019 (areas in km2) 
 

Class Observed Simulated Residual 
No Erosion 0.088 0.100 0.012 

Slight Erosion 0.044 0.036 -0.008 

Moderate Erosion 0.007 0.004 -0.004 
 
 

  

Table 5: Area under each class for soil erosion 2019 and projected soil erosion 2019 (areas in km2)
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sample points are selected within the test site with 
ground coordinates. Using geospatial techniques, 
the soil erosion rate value corresponding to each 
sample point are extracted from the observed soil 
erosion layer and also from the simulated soil erosion 
layer of 2019. As the attributes of the point have soil 
erosion rate value of both observed and simulated 
layer, the attribute is exported as the table. The soil 
erosion rate of the two layers ranges from 0 to 14.10 
t/ha/y for the observed data and 0 to 12.49 t/ha/y 
for simulated data. Using the data from the table, 
regression analysis is performed between observed 
and simulated soil erosion rate, to determine the 
variance of simulated data (Fig. 10). The coefficient 
of determination value, R2 is found to be 0.838, 
which shows more than 80% of the simulated data 
can be explained by the observed data. Apart from 
few outliers observed at some sampling points, 
the observed data and simulated data are highly 
correlated. With this percentage of the coefficient of 
determination quantitatively, the model shows a high 
percentage of agreement.

For qualitatively validating the model, the 
observed and simulated soil erosion layers are 
classified and 3 class is obtained as per maximum 
soil erosion rate (Table 5). As in case of LULC, which 
represents qualitative values, regression analysis is 
performed considering simulated data as dependent 
variable and observed data as independent variable. 
The co-efficient of determination, R2 is found to be 
0.96, which also shows high percent of agreement. 
The model is validated quantitatively and qualitatively 
with high percent of agreement.

Over estimation is observed in the ‘No Erosion’ 
class and under estimation are observed in the ‘Slight 
Erosion’ and ‘Moderate Erosion’ class. The soil erosion 
studies conducted earlier in the region were found 
to be of courser temporal resolution, i.e. time gap 
between the two studies was 10 years. Even though 

the output results from the earlier studies were for 
the whole state of Manipur, the time gap between 
the outputs were big and is difficult for trend analysis 
(Sen et al., 1996; Sen et al., 2006). In this study, the 
resultant outputs are provided for consecutive years 
and for the future also, hence trend analysis of the 
soil erosion in the basin can be analyse with ease. 
Also there is observation, such as increase in area 
under ‘No Erosion’ class and decrease rate of soil 
erosion as the analysis is done from past towards 
future (Table 6). 

CONCLUSION 
The present study focus on the estimation of 

the soil erosion rate over the period of 9 years, and 
also the prediction of future soil erosion rate. As the 
estimation of the future soil erosion rate is dependent 
on the projected LULC, the focus has also been 
over the prediction of future LULC. With the good 
agreement of the model is observed for prediction of 
LULC, the estimation of the future soil erosion rate is 
performed using the same model. The results of the 
model shows strong correlation with the observed 
data used for validation, hence the model can be 
used for estimation of further future soil erosion rate. 
The result of the model can be improved by using 
other model if the region has not face the hindrance 
of data scarcity.

The ranges of the soil erosion rate has been 
analyse in this study for 2011 to 2019 and 2021, 
2023 and 2025. The trending of the maximum range 
decreases as the study moves forward the time and 
in future. Higher rate of erosion is observed the 
past years due to the activity like jhum cultivation, 
deforestation, slash and burning practice in the hilly 
region of the basin. As the year moves towards the 
recent past, there is decrease in the erosion rate due 
to the new land use policy, afforestation schemes 
and conservative measure taken up with initiation 

Table 6: Range of soil erosion rate from 2011 to 2025 (t/ha/y) 
 

 Year 2011 2012 2013 2014 2015 2016 
Range 
t/ha/y 

Minimum 0 0 0 0 0 0 
Maximum 776.63 604.00 1203.07 886.32 1253.70 1071.79 

 Year 2017 2018 2019 2021 2023 2025 

Range 
t/ha/y 

Minimum 0 0 0 0 0 0 
Maximum 631.10 293.72 266.45 524.27 1160.21 783.14 

 

Table 6: Range of soil erosion rate from 2011 to 2025 (t/ha/y)
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from the policy maker. Conservative structures are 
also encouraged in the hilly region in the recent past 
hence positive signs towards the environment are 
observed. The rate of soil erosion increases from 
776.63 t/ha/y in 2011 to 1253.7 t/ha/y in 2015 and 
then decreases to 233.45 t/ha/y in 2019 due to 
conservative practices followed by the inhabitants. 
The projected scenario from the study is possible in 
the future only if we intervene in the degradation 
activity in the environment at present time. 
Intense land degradation problems may be solved 
and sustainable development can be achieved 
even in this developing region, by considering the 
results from this study. The result of this study is 
focusing on the future simulated data which can 
be made into better results if the policymakers and 
stakeholders, and none the less, the inhabitants take 
up conservative measure against the destruction of 
environments.
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ABBREVIATIONS
% Percentage
A Rate of soil erosion
ANN Artificial neural network
C Crop Management
CA	 Cellular automata

CHIRPS	 Climate Hazards Group InfraRed 
Precipitation with Station

DEM Digital Elevation Model
Eq Equation
EUROSEM European soil erosion model
exp Exponent
h hour
ha hectare

ISRIC International Soil Reference and 
Information Centre

K Soil Erodibilty
log Logarithm
LR Logistic regression
LS Slope length
LULC Land Use Land Cover
MCE Multi-criteria evaluation
MJ Mega Joule
mm millimeter

MODIS Moderate resolution imaging 
spectroradiometer

MOLUSCE Modules for land use change 
simulations

NASA-NCCS
National Auronautics and Space 
Administration – NASA Centre for 
Climate Change Simulation 

NBBS & LUP National Bureau of Soil Survey and 
Land Use Planning

NDVI Normalized difference vegetation 
index

NESAC North Eastern Space Application 
Centre

NEX-GDDP NASA Earth Exchange Global Daily 
Downscaled Projection

NIR Near Infra red
P Annual precipitation
P Practice management factor
Pi Monthly precipitation
R Rainfall erosivity
R2 Coefficient of determination
RUSLE Revised universal soil loss equation
SRTM Shuttle radar topographic mission
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USGS United state geological survey
USLE Universal Soil Loss Equation

USPED Unit stream power-based erosion 
deposition

WEPP Water erosion prediction project
WoE Weight of evidence
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